[1] B. Saha, S. Vedachalam, A.K. Dalai, Review on recent advances in adsorptive desulfurization, Fuel Process. Technol. 214 (2021) 106685. [2] R. Ullah, M. Tuzen, Interactions of Ni/ZnO with alumina support and their influence on deep reactive adsorption desulfurization, J. Mol. Liq. 365 (2022) 120082. [3] L. li, F. Ju, Y. Sun, H. Pan, H. Ling, Self-sulfidation adsorbent for reactive adsorption desulfurization, Fuel 313 (2022) 122696. [4] Y.C. Lyu, Z.W. Sun, X.T. Meng, Y. Wu, X.M. Liu, Y. Hu, Scale-up reactivation of spent S-Zorb adsorbents for gasoline desulfurization, J. Hazard Mater. 423 (Pt A) (2022) 126903. [5] W.J. Song, W. Du, C. Fan, M.L. Yang, F. Qian, Adaptive weighted hybrid modeling of hydrocracking process and its operational optimization, Ind. Eng. Chem. Res. 60 (9) (2021) 3617-3632. [6] M. Morales-Blancas, F.S. Mederos-Nieto, I. Elizalde, J. Felipe Sanchez-Minero, F. Trejo-Zarraga, Discrete lumping kinetic models for hydrodesulfuration and hydrocracking of a mixture of FCC feedstock and light gasoil, Chem. Pap. 76 (8) (2022) 4885-4891. [7] O. Patierno, P. Cipriani, F. Pochetti, M. Giona, Pyrolysis of automotive shredder residues: a lumped kinetic characterization, Chem. Eng. J. 70 (2) (1998) 157-163. [8] O.P. Hamadi, T. Varga, Novel distributed parameter model-based continuous lumping approach: an application to a pilot-plant hydrocracking reactor, Chem. Eng. Sci. 271 (2023) 118572. [9] M.F. Wang, H.P. Yang, J. Wang, T. Gu, M. Zhong, Z.H. Dai, J. Li, Structure-oriented lumping method: an effective tool for molecular refining, Ind. Eng. Chem. Res. 62 (33) (2023) 12845-12854. [10] Z.Y. Pang, P. Huang, C. Lian, C. Peng, X.C. Fang, H.L. Liu, Data-driven prediction of product yields and control framework of hydrocracking unit, Chem. Eng. Sci. 283 (2024) 119386. [11] R.S. Qin, J.S. Zhao, Adaptive multiscale convolutional neural network model for chemical process fault diagnosis, Chin. J. Chem. Eng. 50 (2022) 398-411. [12] H.S. Duan, X. Meng, J. Tang, J.F. Qiao, Prediction of NO concentration using modular long short-term memory neural network for municipal solid waste incineration, Chin. J. Chem. Eng. 56 (2023) 46-57. [13] L. Xie, G.M. Zhou, C.S. Huo, J.W. He, Z.H. Luo, J. Yang, Development of effective voidage correlations in pilot-scale liquid-solid fluidized bed based on data-driven modeling, Ind. Eng. Chem. Res. 62 (25) (2023) 9901-9909. [14] K.X. Bi, T. Qiu, An intelligent SVM modeling process for crude oil properties prediction based on a hybrid GA-PSO method, Chin. J. Chem. Eng. 27 (8) (2019) 1888-1894. [15] Z.Z. Alireza Baghban Jafar Sasanipour, Sajjad Habibzadeh, Estimating solubility of supercritical H2S in ionic liquids through a hybrid LSSVM chemical structure model, Chin. J. Chem. Eng. 27 (3) (2019) 620-627. [16] W. Li, J.L. Yang, P.H. Yang, S. Li, Characteristic selection and prediction of octane number loss in gasoline refinement process, E3S Web Conf. 245 (2021) 01040. [17] J. Ma, J. Lin, Intelligent forecast model of octane number loss using BP neural network and random forests, in: 2022 IEEE 4th Int. Conf. Civ. Aviat. Saf. Inf. Technol. ICCASIT, 2022: pp. 268-271. [18] J. Guo, Y.J. Lou, W.Y. Wang, X.H. Wu, Optimization modeling and empirical research on gasoline octane loss based on data analysis, J. Adv. Transport. 2021 (2021) 5553069. [19] B. Chen, J. Wang, S. Liu, F.S. Ouyang, D. Xiong, M.Y. Zhao, An industrial data-based model to reduce octane number loss of refined gasoline for S zorb process, Petrol. Chem 63 (3) (2023) 299-309. [20] H. Jia, W. Du, C. Fan, M. Yang, Mechanism modeling of S-zorb reactors and parameter estimation with improved whale algorithm, J. Chem. Eng. Chin. Univ. 32 (6) (2018) 1395-1402. [21] C. Cao, Z. Shao, S zorb device online product prediction and multi-objective operation optimization analysis based on SSA-RELM, Acta Pet. Sin. Process. Sect. 38 (6) (2022) 1305-1316. [22] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203. [23] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, fourth ed., McGraw-Hill, New York, 1987. [24] H. Yu, J.G. Zhao, X.M. Hou, B.X. Shen, Thermodynamic analysis on the process of S Zorb reaction adsorption desulfurization, Chem. Ind. Eng. Prog. 33 (11) (2014) 2843-2847. [25] A. Ryzhikov, I. Bezverkhyy, J.P. Bellat, Reactive adsorption of thiophene on Ni/ZnO: role of hydrogen pretreatment and nature of the rate determining step, Appl. Catal. B Environ. 84 (3-4) (2008) 766-772. [26] J. Kennedy, R. Eberhart, Particle swarm optimization, Proceedings of ICNN'95 - International Conference on Neural Networks. Perth, WA, Australia. IEEE, (1995) 1942-1948. [27] J. Long, K. Deng, R.C. He, Closed-loop scheduling optimization strategy based on particle swarm optimization with niche technology and soft sensor method of attributes-applied to gasoline blending process, Chin. J. Chem. Eng. 61 (2023) 43-57. [28] D.L. Chen, Y.Q. Luo, X.G. Yuan, Cascade refrigeration system synthesis based on hybrid simulated annealing and particle swarm optimization algorithm, Chin. J. Chem. Eng. 58 (2023) 244-255. [29] S.R. Sun, A. Yang, C.L. Chang, G.Q. Hua, J.Z. Ren, Z.G. Lei, W.F. Shen, Improved multiobjective particle swarm optimization integrating mutation and changing inertia weight strategy for optimal design of the extractive single and double dividing wall column, Ind. Eng. Chem. Res. 62 (43) (2023) 17923-17936. [30] Y. Shi, R. Eberhart, A modified particle swarm optimizer, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360). Anchorage, AK, USA. IEEE, (1998) 69-73. [31] C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn. 20 (3) (1995) 273-297. |