[1] X. Gao, Z. Tian, X. Zhang, Review on the study of theory and method of electrical capacitance tomography of cryogenics propellant, Phys. Fluids 35 (5) (2023) 053308. [2] M.L. Meyer, J.W. Hartwig, S.G. Sutherlin, A.J. Colozza, Recent concept study for cryogenic fluid management to support opposition class crewed missions to Mars, Cryogenics 129 (2023) 103622. [3] A. do Nascimento Wrasse, E.N. dos Santos, M.J. da Silva, H. Wu, C. Tan, Capacitive sensors for multiphase flow measurement: A review, IEEE Sens. J. 22 (22) (2022) 21391-21409. [4] H.G. Wang, W.Q. Yang, Application of electrical capacitance tomography in circulating fluidised beds-A review, Appl. Therm. Eng. 176 (2020) 115311. [5] X.X. Li, A.J. Jaworski, X.A. Mao, Bubble size and bubble rise velocity estimation by means of electrical capacitance tomography within gas-solids fluidized beds, Measurement 117 (2018) 226-240. [6] D.Y. Yang, L.J. Liu, W.X. Feng, Experimental investigation of an internally circulating fluidized bed with 32-electrode electrical capacitance volume tomography, Measurement 127 (2018) 227-237. [7] K. Perera, W.A.S. Kumara, F. Hansen, S. Mylvaganam, R.W. Time, Comparison of gamma densitometry and electrical capacitance measurements applied to hold-up prediction of oil-water flow patterns in horizontal and slightly inclined pipes, Meas. Sci. Technol. 29 (6) (2018) 065102. [8] A. Alzoghaiby, M. Albagami, S.A. Aldosari, Z. Almutairi, F.M. Al-Alweet, M. Shoaib, S.A. Alshebeili, Adaptive filtering techniques for velocity estimation of tomographic electric capacitance signals of two-phase gas/oil flows, Flow Meas. Instrum. 77 (2021) 101866. [9] S.M. Salehi, H. Karimi, R. Moosavi, A.A. Dastranj, Different configurations of capacitance sensor for gas/oil two phase flow measurement: An experimental and numerical study, Exp. Therm. Fluid Sci. 82 (2017) 349-358. [10] Y.L. Lin, Y. Xu, H.G. Wang, Investigation of gas/oil/water distribution based on electrical capacitance and microwave tomography, 2021 5th International Conference on Imaging, Signal Processing and Communications (ICISPC), Kumamoto, Japan. IEEE, 2021, pp. 21-29. [11] Q. Wang, M. Wang, K. Wei, C.H. Qiu, Visualization of gas-oil-water flow in horizontal pipeline using dual-modality electrical tomographic systems, IEEE Sens. J. 17 (24) (2017) 8146-8156. [12] J. Zheng, L.H. Peng, A deep learning compensated back projection for image reconstruction of electrical capacitance tomography, IEEE Sens. J. 20 (9) (2020) 4879-4890. [13] H. Zhu, J.T. Sun, J. Long, W.B. Tian, S.J. Sun, L.J. Xu, Deep image refinement method by hybrid training with images of varied quality in electrical capacitance tomography, IEEE Sens. J. 21 (5) (2021) 6342-6355. [14] J. Zheng, H.C. Ma, L.H. Peng, A CNN-based image reconstruction for electrical capacitance tomography, 2019 IEEE International Conference on Imaging Systems and Techniques (IST), Abu Dhabi, United Arab Emirates. IEEE, 2019. [15] Z.Q. Xu, F. Wu, L.Y. Zhu, Y. Li, LSTM model based on multi-feature extractor to detect flow pattern change characteristics and parameter measurement, IEEE Sens. J. 21 (3) (2021) 3713-3721. [16] H.M. Gao, S.C. Ku, X.H. Jian, Identification of two-phase flow patterns based on capacitance data of electrical capacitance tomography with semi-supervised generative adversarial network, Rev. Sci. Instrum. 94 (10) (2023) 104705. [17] W. Deabes, A.E. Abdel-Hakim, K.E. Bouazza, H. Althobaiti, Adversarial resolution enhancement for electrical capacitance tomography image reconstruction, Sensors 22 (9) (2022) 3142. [18] Z.H. Xia, Z.Q. Cui, Y.X. Chen, Y.F. Hu, H.X. Wang, Generative adversarial networks for dual-modality electrical tomography in multi-phase flow measurement, Measurement 173 (2021) 108608. [19] H. Mousazadeh, N. Tarabi, J. Taghizadeh-Tameh, A fusion algorithm for mass flow rate measurement based on neural network and electrical capacitance tomography, Measurement 231 (2024) 114573. [20] H.J. Xie, T. Xia, Z.N. Tian, X.D. Zheng, X.B. Zhang, A least squares support vector regression coupled linear reconstruction algorithm for ECT, Flow Meas. Instrum. 77 (2021) 101874. [21] H.J. Xie, H. Chen, X. Gao, X.D. Zheng, X.Q. Zhi, X.B. Zhang, Theoretical analysis of fuzzy least squares support vector regression method for void fraction measurement of two-phase flow by multi-electrode capacitance sensor, Cryogenics 103 (2019) 102969. [22] H.J. Xie, L. Yu, R. Zhou, L.M. Qiu, X.B. Zhang, Preliminary evaluation of cryogenic two-phase flow imaging using electrical capacitance tomography, Cryogenics 86 (2017) 97-105. [23] A. Hunt, I. Rusli, M. Schakel, A. Kenbar, High-speed density measurement for LNG and other cryogenic fluids using electrical capacitance tomography, Cryogenics 113 (2021) 103207. [24] P. Behruzi, A. Hunt, R. Foster-Turner, A. Fischer, Testing an Electrical Capacitance Tomography sensor in liquid hydrogen, AIAA SCITECH 2023 Forum, National Harbor, MD & Online. AIAA, 2023. [25] M.D. Green, R. Foster-Turner, A. Hunt, A.M. Ramirez-Mancebo, S.C. Lieber, J.W. Hartwig, D. Moxey, A. Tafuni, Flight-ready electrical capacitance tomography SMARTTS tank for use with cryogenics, Exp. Therm. Fluid Sci. 154 (2024) 111144. [26] X.X. Gao, Z.N. Tian, L.M. Qiu, X.B. Zhang, A hybrid deep learning model for ECT image reconstruction of cryogenic fluids, Flow Meas. Instrum. 87 (2022) 102228. [27] Z.N. Tian, X.X. Gao, L.M. Qiu, X.B. Zhang, Experimental imaging and algorithm optimization based on deep neural network for electrical capacitance tomography for LN2-VN2 flow, Cryogenics 127 (2022) 103568. [28] S. Liu, L. Fu, W.Q. Yang, Optimization of an iterative image reconstruction algorithm for electrical capacitance tomography, Meas. Sci. Technol. 10 (7) (1999) L37-L39. |