[1] Y.Y. Mai, A. Eisenberg, Self-assembly of block copolymers, Chem. Soc. Rev. 41(18) (2012) 5969. [2] F.S. Bates, G.H. Fredrickson, Block copolymers: designer, Soft Mater. 52(2) (1999) 32-38. [3] M.A. Hillmyer, Block Copolymers II, Springer Berlin Heidelberg, Berlin, Heidelberg, 2005. [4] D.A. Olson, L. Chen, M.A. Hillmyer, Templating nanoporous polymers with ordered block copolymers, Chem. Mater. 20(3) (2008) 869-890. [5] I.W. Hamley, Ordering in thin films of block copolymers: fundamentals to potential applications, Prog. Polym. Sci. 34(11) (2009) 1161-1210. [6] R.A. Segalman, Patterning with block copolymer thin films, Mater. Sci. Eng. R Rep. 48(6) (2005) 191-226. [7] Y. Chen, S.S. Xiong, Directed self-assembly of block copolymers for sub-10 nm fabrication, Int. J. Extrem. Manuf. 2(3) (2020) 032006. [8] H. Feng, M. Dolejsi, N. Zhu, S. Yim, W. Loo, P. Ma, C. Zhou, G.S.W. Craig, W. Chen, L. Wan, R. Ruiz, J.J. de Pablo, S.J. Rowan, P.F. Nealey, Optimized design of block copolymers with covarying properties for nanolithography, Nat. Mater. 21(12) (2022) 1426-1433. [9] M.L. Wu, D. Wang, L.J. Wan, Directed block copolymer self-assembly implemented via surface-embedded electrets, Nat. Commun. 7(2016) 10752. [10] M. Kamaraj, A. Datla, S.E. Moulton, S.N. Rath, Biomimetic mineralization of Mn-doped biphasic calcium phosphate in the GelMa hydrogel acting as a functional 3D bioscaffold for osteo defect repair, ACS Appl. Polym. Mater. 6(1) (2024) 943-955. [11] B. Saha, S. Bhattacharyya, S. Mete, A. Mukherjee, P. De, Redox-driven disassembly of polymerechlorambucil polyprodrug: delivery of anticancer nitrogen mustard and DNA alkylation, ACS Appl. Polym. Mater. 1(9) (2019) 2503-2515. [12] S. Malunavar, A. Gallastegui, X.E. Wang, F. Makhlooghiazad, D. Mecerreyes, M. Armand, M. Galceran, P.C. Howlett, M. Forsyth, Formulation and characterization of PS-poly(ionic liquid) triblock electrolytes for sodium batteries, ACS Appl. Polym. Mater. 4(12) (2022) 8977-8986. [13] B. Li, X. Yang, S.Y. Li, J.Y. Yuan, Stable block copolymer single-material organic solar cells: progress and perspective, Energy Environ. Sci. 16(3) (2023) 723-744. [14] D. Han, X.Y. Dong, G.L. Yu, T.T. Gao, K.G. Zhou, Tunable mass transport in the artificial smart membranes based on two-dimensional materials, Adv. Membr. 2(2022) 100045. [15] C. Boucher-Jacobs, M. Rabnawaz, J.S. Katz, R. Even, D. Guironnet, Encapsulation of catalyst in block copolymer micelles for the polymerization of ethylene in aqueous medium, Nat. Commun. 9(1) (2018) 841. [16] D. Bhattacharya, S. Kole, O. Kizilkaya, J. Strzalka, P.P. Angelopoulou, G. Sakellariou, D.M. Cao, C.G. Arges, Electrolysis on a chip with tunable thin film nanostructured PGM electrocatalysts generated from self-assembled block copolymer templates, Small 17(25) (2021) 2100437. [17] Y. Nabae, S. Nagata, K. Ohnishi, Y.Y. Liu, L. Sheng, X.L. Wang, T. Hayakawa, Block copolymer templated carbonization of nitrogen containing polymer to create fine and mesoporous carbon for oxygen reduction catalyst, J. Polym. Sci. Part A Polym. Chem. 55(3) (2017) 464-470. [18] Y. Wu, J. Guo, W. Wang, Z.H. Chen, Z. Chen, R. Sun, Q. Wu, T. Wang, X.T. Hao, H. M. Zhu, J. Min, A conjugated donor-acceptor block copolymer enables over 11% efficiency for single-component polymer solar cells, Joule 5(7) (2021) 1800-1815. [19] J.G. Sun, B. Li, L. Hu, J.J. Guo, X.F. Ling, X.L. Zhang, C. Zhang, X.X. Wu, H.H. Huang, C.X. Han, X.F. Liu, Y.Y. Li, S.J. Huang, T. Wu, J.Y. Yuan, W.L. Ma, Hybrid block copolymer/perovskite heterointerfaces for efficient solar cells, Adv. Mater. 35(1) (2023) e2206047. [20] Y. Wang, Nondestructive creation of ordered nanopores by selective swelling of block copolymers: toward homoporous membranes, Acc. Chem. Res. 49(7) (2016) 1401-1408. [21] Z. Zhang, C. Chen, S.S. Zhang, X.Y. Ye, J.M. Zhou, Y. Wang, Large-area homoporous membranes (HOMEs) enabled by multiple annealing, J. Membr. Sci. 662(2022) 121021. [22] T. Chen, X.M. Wei, Z. Chen, D. Morin, S.V. Alvarez, Y. Yoon, Y. Huang, Designing energy-efficient separation membranes: knowledge from nature for a sustainable future, Adv. Membr. 2(2022) 100031. [23] H.Y. Chen, X.Q. Chen, Z.C. Ye, H.L. Liu, Y. Hu, Competitive adsorption and assembly of block copolymer blends on nanopatterned surfaces, Langmuir 26(9) (2010) 6663-6668. [24] M.F. Schulz, A.K. Khandpur, F.S. Bates, K. Almdal, K. Mortensen, D.A. Hajduk, S. M. Gruner, Phase behavior of polystyreneepoly(2-vinylpyridine) diblock copolymers, Macromolecules 29(8) (1996) 2857-2867. [25] S.L. Mei, C.J. Jafta, I. Lauermann, Q.D. Ran, M. Käargell, M. Ballauff, Y. Lu, Porous Ti4O7 particles with interconnected-pore structure as a high-efficiency polysulfide mediator for lithiumesulfur batteries, Adv. Funct. Mater. 27(26) (2017) 1701176. [26] J. Yin, Q. Xu, Z.G. Wang, X.P. Yao, Y. Wang, Highly ordered TiO2 nanostructures by sequential vapour infiltration of block copolymer micellar films in an atomic layer deposition reactor, J. Mater. Chem. C 1(5) (2013) 1029-1036. [27] T. Segal-Peretz, J. Ren, S. Xiong, G. Khaira, A. Bowen, L.E. Ocola, R. Divan, M. Doxastakis, N.J. Ferrier, J. de Pablo, P.F. Nealey, Quantitative three-dimensional characterization of block copolymer directed self-assembly on combined chemical and topographical prepatterned templates, ACS Nano 11(2) (2017) 1307-1319. [28] J. Yin, X.P. Yao, J.Y. Liou, W. Sun, Y.S. Sun, Y. Wang, Membranes with highly ordered straight nanopores by selective swelling of fast perpendicularly aligned block copolymers, ACS Nano 7(11) (2013) 9961-9974. [29] L.M. Guo, Y. Wang, Monolithic membranes with designable pore geometries and sizes via retarded evaporation of block copolymer supramolecules, Macromolecules 48(23) (2015) 8471-8479. [30] Y. Wang, F.B. Li, An emerging pore-making strategy: confined swellinginduced pore generation in block copolymer materials, Adv. Mater. 23(19) (2011) 2134-2148. [31] J.M. Zhou, Y.F. Huang, C. Chen, Y. Wang, Homoporous membranes of block copolymers: upscalable preparation by spray coating and performance boosting by quaternization, J. Membr. Sci. 695(2024) 122467. [32] J.M. Zhou, Y. Wang, Selective swelling of block copolymers: an upscalable greener process to ultrafiltration membranes? Macromolecules 53(1) (2020) 5-17. [33] N. Bayliss, B.V.K.J. Schmidt, Hydrophilic polymers: current trends and visions for the future, Prog. Polym. Sci. 147(2023) 101753. [34] R. Fontelo, R.L. Reis, R. Novoa-Carballal, I. Pashkuleva, Preparation, properties, and bioapplications of block copolymer nanopatterns, Adv. Healthc. Mater. 13(1) (2024) e2301810. [35] D.C. Niu, Y.S. Li, J.L. Shi, Silica/organosilica cross-linked block copolymer micelles: a versatile theranostic platform, Chem. Soc. Rev. 46(3) (2017) 569-585. [36] A. El Jundi, S.J. Buwalda, Y. Bakkour, X. Garric, B. Nottelet, Double hydrophilic block copolymers self-assemblies in biomedical applications, Adv. Colloid Interface Sci. 283(2020) 102213. [37] H.B. Feng, X.Y. Lu, W.Y. Wang, N.G. Kang, J.W. Mays, Block copolymers: synthesis, self-assembly, and applications, Polymers 9(10) (2017) 494. [38] M. Praprotnik, L.D. Site, K. Kremer, Multiscale simulation of soft matter: from scale bridging to adaptive resolution, Annu. Rev. Phys. Chem. 59(2008) 545-571. [39] M. Levitt, A. Warshel, Computer simulation of protein folding, Nature 253(5494) (1975) 694-698. [40] S.J. Marrink, D. Peter Tieleman, Perspective on the martini model, Chem. Soc. Rev. 42(16) (2013) 6801-6822. [41] R. Alessandri, F. Grünewald, S.J. Marrink, The martini model in materials science, Adv. Mater. 33(24) (2021) 2008635. [42] H.C. Xu, S. Matysiak, Effect of pH on chitosan hydrogel polymer network structure, Chem. Commun. 53(53) (2017) 7373-7376. [43] G. Campos-Villalobos, F.R. Siperstein, A. Charles, A. Patti, Solvent-induced morphological transitions in methacrylate-based block-copolymer aggregates, J. Colloid Interface Sci. 572(2020) 133-140. [44] S.L. Li, Q.S. Xu, K. Li, C.Y. Yu, Y.F. Zhou, High-c alternating copolymers for accessing sub-5 nm domains via simulations, Phys. Chem. Chem. Phys. 22(10) (2020) 5577-5583. [45] S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The MARTINI force field: coarse grained model for biomolecular simulations, J. Phys. Chem. B 111(27) (2007) 7812-7824. [46] L.S. Dodda, I. Cabeza de Vaca, J. Tirado-Rives, W.L. Jorgensen, LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands, Nucleic Acids Res 45(W1) (2017) W331-W336. [47] W.L. Jorgensen, J. Tirado-Rives, Potential energy functions for atomic-level simulations of water and organic and biomolecular systems, Proc. Natl. Acad. Sci. USA 102(19) (2005) 6665-6670. [48] L.S. Dodda, J.Z. Vilseck, J. Tirado-Rives, W.L. Jorgensen, 1.14*CM1A-LBCC: localized bond-charge corrected CM1A charges for condensed-phase simulations, J. Phys. Chem. B 121(15) (2017) 3864-3870. [49] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592. [50] M.J. Abraham, T. Murtola, R. Schulz, S. Pall, J.C. Smith, B. Hess, E. Lindahl, GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX 1(2015) 19-25. [51] D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J. Berendsen, GROMACS: fast, flexible, and free, J. Comput. Chem. 26(16) (2005) 1701-1718. [52] T. Darden, D. York, L. Pedersen, Particle mesh Ewald: an N,log(N) method for Ewald sums in large systems, J. Chem. Phs. 98(12) (1993) 10089-10092. [53] G. Bussi, D. Donadio, M. Parrinello, Canonical sampling through velocity rescaling, J. Chem. Phys. 126(1) (2007) 014101. [54] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath, J. Chem. Phys. 81(8) (1984) 3684-3690. [55] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys. 52(12) (1981) 7182-7190. [56] W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics, J. Mol. Graph. 14(1) (1996) 33-38, 27-28. [57] G.D.R. Matos, D.Y. Kyu, H.H. Loeffler, J.D. Chodera, M.R. Shirts, D.L. Mobley, Approaches for calculating solvation free energies and enthalpies demonstrated with an update of the FreeSolv database, J. Chem. Eng. Data 62(5) (2017) 1559-1569. [58] T. Steinbrecher, I. Joung, D.A. Case, Soft-core potentials in thermodynamic integration: comparing one- and two-step transformations, J. Comput. Chem. 32(15) (2011) 3253-3263. [59] M.R. Shirts, J.D. Chodera, Statistically optimal analysis of samples from multiple equilibrium states, J. Chem. Phys. 129(12) (2008) 124105. [60] P.V. Klimovich, M.R. Shirts, D.L. Mobley, Guidelines for the analysis of free energy calculations, J. Comput. Aided Mol. Des. 29(5) (2015) 397-411. [61] G. Rossi, L. Monticelli, S.R. Puisto, I. Vattulainen, T. Ala-Nissila, Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case, Soft Matter 7(2) (2011) 698-708. [62] P. Knychała, K. Timachova, M. Banaszak, N.P. Balsara, 50th anniversary perspective: phase behavior of polymer solutions and blends, Macromolecules 50(8) (2017) 3051-3065. [63] M.W. Matsen, F.S. Bates, Conformationally asymmetric block copolymers, J. Polym. Sci., Part B: Polym. Phys. 35(6) (1997) 945-952. |