[1] W. Wang, H.P. Shao, C. Sun, X.Z. Jiang, S.X. Zhou, G. Yu, S.B. Deng, Preparation of magnetic covalent triazine frameworks by ball milling for efficient removal of PFOS and PFOA substitutes from water, Environ. Sci. Nano 9(4) (2022) 1466-1475. [2] M. Ortel, N. Kalinovich, G.V. Roschenthaler, V. Wagner, Long-term stabilization äof sprayed zinc oxide thin film transistors by hexafluoropropylene oxide self assembled monolayers, J. Appl. Phys. 114(9) (2013) 094512. [3] A. Pysanenko, D. Kollarov a, J. Fedor, J. Ko ci sek, M. Farník, Positive ionization and electron attachment of hexafluoropropylene oxide in different cluster environments, Int. J. Mass Spectrom. 435(2019) 145-150. [4] A.I. Safonov, V.S. Sulyaeva, E.Y. Gatapova, S.V. Starinskiy, N.I. Timoshenko, O.A. Kabov, Deposition features and wettability behavior of fluoropolymer coatings from hexafluoropropylene oxide activated by NiCr wire, Thin Solid Films 653(2018) 165-172. [5] H. Olvera-Vargas, Z.X. Wang, J.X. Xu, O. Lefebvre, Synergistic degradation of GenX (hexafluoropropylene oxide dimer acid) by pairing graphene-coated Ni-foam and boron doped diamond electrodes, Chem. Eng. J. 430(2022) 132686. [6] J.F. Bian, W.R. Lujan, D. Harper-Nixon, H.S. Jeon, D.H. Weinkauf, Effect of hexafluoropropylene oxide plasma polymer particle coatings on the rheological properties of boron nitride/poly(dimethylsiloxane) composites, J. Colloid Interface Sci. 290(2) (2005) 582-591. [7] M. Koyama, M. Akiyama, K. Kashiwagi, K. Nozaki, T. Okazoe, Synthesis of crystalline CF3-rich perfluoropolyethers from hexafluoropropylene oxide and (trifluoromethyl)trimethylsilane, Macromol. Rapid Commun. 43(9) (2022) e2200038. [8] A.F. Lowell, Polymerization of Hexafluoropropylene Oxide, US Pat. 3412148A (1968). [9] D. Lokhat, A. Singh, M. Starzak, D. Ramjugernath, Design of a continuous gasphase process for the production of hexafluoropropene oxide, Chem. Eng. Res. Des. 119(2017) 93-100. [10] N.T. Tran, S. Cheong, M.D. Ramadhan, J. Kim, K. Kim, H. Kim, H. Lee, Synthesis of hexafluoropropylene oxide from hexafluoropropylene and hypochlorite using hydrofluoroether solvent, Kor. J. Chem. Eng. 41(6) (2024) 1833-1840. [11] A. Wroblewska, E. Milchert, E. Meissner, Oxidation of hexa fluoropropylene with oxygen to hexafluoropropylene oxide, Org. Process Res. Dev. 14(1) (2010) 272-277. [12] M. Ła?giewczyk, Z. Czech, Oxidation of hexafluoropropylene to hexafluoropropylene oxide using oxygen, Pol. J. Chem. Technol. 12(2) (2010) 1-3. [13] D. Lokhat, D. Ramjugernath, M. Starzak, Kinetics of the gas-phase noncatalytic oxidation of hexafluoropropene, Ind. Eng. Chem. Res. 51(43) (2012) 13961-13972. [14] S. Grimme, Density functional theory with London dispersion corrections, Wiley Interdiscip. Rev. Comput. Mol. Sci. 1(2) (2011) 211-228. [15] F. Weigend, R. Ahlrichs, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy, Phys. Chem. Chem. Phys. 7(18) (2005) 3297-3305. [16] J.J. Zheng, X.F. Xu, D.G. Truhlar, Minimally augmented Karlsruhe basis sets, Theor. Chem. Acc. 128(3) (2011) 295-305. [17] D. Cremer, A.N. Wu, A. Larsson, E. Kraka, Some thoughts about bond energies, bond lengths, and force constants, Mol. Model. Annu. 6(4) (2000) 396-412. [18] Z. Konkoli, D. Cremer, A new way of analyzing vibrational spectra. I. Derivation of adiabatic internal modes, Int. J. Quant. Chem. 67(1) (1998) 1-9. [19] Z. Konkoli, D. Cremer, A new way of analyzing vibrational spectra. III. Characterization of normal vibrational modes in terms of internal vibrational modes, Int. J. Quant. Chem. 67(1) (1998) 29-40. [20] Y.W. Tao, W.L. Zou, D. Sethio, N. Verma, Y. Qiu, C. Tian, D. Cremer, E. Kraka, In situ measure of intrinsic bond strength in crystalline structures: local vibrational mode theory for periodic systems, J. Chem. Theor. Comput. 15(3) (2019) 1761-1776. [21] R. Kalescky, W. Zou, E. Kraka, D. Cremer, Local vibrational modes of the water dimereComparison of theory and experiment, Chem. Phys. Lett. 554(2012) 243-247. [22] Y.W. Tao, C. Tian, N. Verma, W.L. Zou, C. Wang, D. Cremer, E. Kraka, Recovering intrinsic fragmental vibrations using the generalized subsystem vibrational analysis, J. Chem. Theor. Comput. 14(5) (2018) 2558-2569. [23] K. Yamaguchi, The electronic structures of biradicals in the unrestricted Hartree-Fock approximation, Chem. Phys. Lett. 33(2) (1975) 330-335. [24] T. Lu, F.W. Chen, Multiwfn: a multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592. [25] S. Canneaux, F. Bohr, E. Henon, KiSThelP: a program to predict thermodynamic properties and rate constants from quantum chemistry results, J. Comput. Chem. 35(1) (2014) 82-93. [26] T. Lu, Q.X. Chen, Shermo: a general code for calculating molecular thermochemistry properties, Comput. Theor. Chem. 1200(2021) 113249. [27] Y. Zhu, C. Chen, J.W. Shi, W.F. Shangguan, A novel simulation method for predicting ozone generation in corona discharge region, Chem. Eng. Sci. 227(2020) 115910. [28] A. Yehia, Calculation of ozone generation by positive DC corona discharge in coaxial wire-cylinder reactors, J. Appl. Phys. 101(2) (2007) 023306. [29] K. Yanallah, F. Pontiga, Y. Meslem, A. Castellanos, An analytical approach to wire-to-cylinder corona discharge, J. Electrost. 70(4) (2012) 374-383. [30] X.T. Chen, L.L. Zhang, L.Y. Zhou, S.H. Wang, J.F. Chen, Mechanism and kinetics study of the chemically initiated oxidative polymerization of hexafluoropropylene, AIChE J. 70(11) (2024) e18534. [31] D. Sianesi, A. Pasetti, R. Fontanelli, G.C. Bernardi, G. Caporiccio, Perfluoropolyethers by photooxidation of fluoroolefins, La Chimica e l’Industria. 55(2) (1973) 208-221. [32] S.V. Kartsov, P.I. Valov, L.F. Sokolov, S.V. Sokolov, The role of the reactor surface in the liquid-phase oxidation of hexafluoropropylene, Bull. Acad. Sci. USSR Div. Chem. Sci. 27(10) (1978) 2006-2010. |