[1] D. Chehadeh, X.L. Ma, H. Al Bazzaz, Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: a review, Fuel 334 (2023) 126404. [2] X.L. Qin, L. Ye, J.C. Liu, Y.H. Xu, A. Murad, Q. Ying, H.T. Shen, X. Wang, L.X. Hou, X. Pu, X. Han, J.B. Li, R.J. Wang, N. Liu, A molecular-level coupling model of fluid catalytic cracking and hydrotreating processes to improve gasoline quality, Chem. Eng. J. 451 (2023) 138778. [3] Z. Liu, J.C. Yuan, Z.Z. Sun, X. Feng, Y.B. Liu, H.H. Zhu, C. Peng, C.H. Yang, Morphology effect on catalytic performance of ebullated-bed residue hydrotreating over Ni-Mo/Al2O3 catalyst: a kinetic modeling study, Green Chem. Eng. 5 (1) (2024) 60-67. [4] Z.Y. Pang, P. Huang, C. Lian, C. Peng, X.C. Fang, H.L. Liu, Data-driven prediction of product yields and control framework of hydrocracking unit, Chem. Eng. Sci. 283 (2024) 119386. [5] D. Haolan Tao, S.J. Wang, P. . Honglai Liu, P. Cheng Lian, Deep neural network enhanced mesoscopic thermodynamic model for unlocking the electrode/electrolyte interface, Angew. Chem. Int. Ed. 64 (6) (2025) e202418447. [6] Y. Lin, C. Lian, M.U. Berrueta, H. Liu, R. van Roij, Microscopic model for cyclic voltammetry of porous electrodes, Phys. Rev. Lett. 128 (20) (2022) 206001. [7] W.Q. Yang, Y.T. Lin, J.L. Du, C. Lian, H.L. Liu, Integrating electrochemical and thermal models for improved lithium-lon battery energy storage system heat dissipation, Chin. J. Chem. Eng., (2025)(in press). [8] S.C.D. Eswaran, M.V. Olarte, R. Rallo, L. Marrlett, J. Harper, M. Anderson, E. Shapiro, P. Kozyra, A. Starks, HT model: using the molecular transformer for predicting hydrotreating reactions, Energy Fuels 37 (19) (2023) 14922-14935. [9] D. Ghosh, J. Moreira, P. Mhaskar, Application of data-driven modeling approaches to industrial hydroprocessing units, Chem. Eng. Res. Des. 177 (2022) 123-135. [10] D.A. Boiko, R. MacKnight, B. Kline, G. Gomes, Autonomous chemical research with large language models, Nature 624 (7992) (2023) 570-578. [11] N.J. Szymanski, B. Rendy, Y. Fei, R.E. Kumar, T. He, D. Milsted, M.J. McDermott, M. Gallant, E.D. Cubuk, A. Merchant, H. Kim, A. Jain, C.J. Bartel, K. Persson, Y. Zeng, G. Ceder, An autonomous laboratory for the accelerated synthesis of novel materials, Nature 624 (7990) (2023) 86-91. [12] A.J. Thirunavukarasu, D.S.J. Ting, K. Elangovan, L. Gutierrez, T.F. Tan, D.S.W. Ting, Large language models in medicine, Nat. Med. 29 (2023) 1930-1940. [13] Z.L. Zheng, Z.C. Rong, D. Nakul Rampal, P. . Christian Borgs, P. .J.T. Chayes, P. .O.M. Yaghi, A GPT-4 reticular chemist for guiding MOF discovery, Angew. Chem. Int. Ed. 62 (46) (2023) e202311983. [14] J. Dagdelen, A. Dunn, S. Lee, N. Walker, A.S. Rosen, G. Ceder, K.A. Persson, A. Jain, Structured information extraction from scientific text with large language models, Nat. Commun. 15 (1) (2024) 1418. [15] Feng Y, Hu G, Zhang Z. Gpt4battery: An Llm-Driven Framework for Adaptive State of Health Estimation of Raw Li-Ion Batteries. arXiv preprint arXiv:240200068, 2024. [16] Z.P. Gu, B.K. Zhu, G.B. Zhu, Y.Y. Chen, M. Tang, J.Q. Wang, AnomalyGPT: detecting industrial anomalies using large vision-language models, Proc. AAAI Conf. Artif. Intell. 38 (3) (2024) 1932-1940. [17] Y.Q. Pan, Q.F. Xiao, F.Y. Zhao, Z.H. Li, J.Y. Liu, S. Ullah, K.H. Lim, T.Y. Huang, Z.Y. Yu, C. Li, D.Y. Zhang, Q.Q. Xue, Q. Chen, S. Kawi, Y.J. Wang, G.S. Luo, Chat-microreactor: a large-language-model-based assistant for designing continuous flow systems, Chem. Eng. Sci. 311 (2025) 121567. [18] M.L. Tsai, C.W. Ong, C.L. Chen, Exploring the use of large language models (LLMs) in chemical engineering education: Building core course problem models with Chat-GPT, Educ. Chem. Eng. 44 (2023) 71-95. [19] F. Caccavale, C.L. Gargalo, K.V. Gernaey, U. Kruhne, Towards Education 4.0: The role of Large Language Models as virtual tutors in chemical engineering, Educ. Chem. Eng. 49 (2024) 1-11. [20] M. Keith, E. Keiller, C. Windows-Yule, I. Kings, P. Robbins, Harnessing generative AI in chemical engineering education: Implementation and evaluation of the large language model ChatGPT v3.5, Educ. Chem. Eng. 51 (2025) 20-33. [21] M.P. Polak, D. Morgan, Extracting accurate materials data from research papers with conversational language models and prompt engineering, Nat. Commun. 15 (1) (2024) 1569. [22] Z. Zheng, O. Zhang, C. Borgs, J.T. Chayes, O.M. Yaghi, ChatGPT chemistry assistant for text mining and the prediction of MOF synthesis, J Am Chem Soc 145 (32) (2023) 18048-18062. [23] Z.L. Zheng, Z.G. He, O. Khattab, N. Rampal, M.A. Zaharia, C. Borgs, J.T. Chayes, O.M. Yaghi, Image and data mining in reticular chemistry powered by GPT-4V, Digit. Discov. 3 (3) (2024) 491-501. [24] J. Maharjan, A. Garikipati, N.P. Singh, L. Cyrus, M. Sharma, M. Ciobanu, G. Barnes, R. Thapa, Q. Mao, R. Das, OpenMedLM: prompt engineering can out-perform fine-tuning in medical question-answering with open-source large language models, Sci. Rep. 14 (1) (2024) 14156. [25] L. Wang, X. Chen, X.W. Deng, H. Wen, M.K. You, W.Z. Liu, Q. Li, J. Li, Prompt engineering in consistency and reliability with the evidence-based guideline for LLMs, NPJ Digit. Med. 7 (1) (2024) 41. [26] Y. Kang, J. Kim, ChatMOF: an artificial intelligence system for predicting and generating metal-organic frameworks using large language models, Nat. Commun. 15 (1) (2024) 4705. [27] D. Peng, L.B. Zheng, D. Liu, C. Han, X. Wang, Y. Yang, L. Song, M.Y. Zhao, Y.F. Wei, J.Y. Li, X.X. Ye, Y.X. Wei, Z.H. Feng, X.H. Huang, M.M. Chen, Y.J. Gou, Y. Xue, L.Y. Zhang, Large-language models facilitate discovery of the molecular signatures regulating sleep and activity, Nat. Commun. 15 (1) (2024) 3685. [28] N.S. Lai, Y.S. Tew, X.L. Zhong, J. Yin, J.L. Li, B.H. Yan, X.N. Wang, Artificial intelligence (AI) workflow for catalyst design and optimization, Ind. Eng. Chem. Res. 62 (43) (2023) 17835-17848. [29] J.C. Jiang, T.Y. Li, C. Chang, C. Yang, L. Liao, Fault diagnosis method for lithium-ion batteries in electric vehicles based on isolated forest algorithm, J. Energy Storage 50 (2022) 104177. [30] F.T. Liu, K.M. Ting, Z.H. Zhou, Isolation forest, 2008 Eighth IEEE International Conference on Data Mining. December 15-19, 2008, Pisa, Italy. IEEE, (2008) 413-422. [31] X.L. Tao, Y. Peng, F. Zhao, P.C. Zhao, Y. Wang, A parallel algorithm for network traffic anomaly detection based on Isolation Forest, Int. J. Distrib. Sens. Netw. 14 (11) (2018) 155014771881447. [32] Y.B. Wang, D.G. Chang, S.R. Qin, Y.H. Fan, H.B. Mu, G.J. Zhang, Separating multi-source partial discharge signals using linear prediction analysis and isolation forest algorithm, IEEE Trans. Instrum. Meas. 69 (6) (2020) 2734-2742. [33] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning representations by back-propagating errors, Nature 323 (1986) 533-536. [34] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput. 9 (8) (1997) 1735-1780. [35] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE 86 (11) (1998) 2278-2324. [36] R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-CAM: visual explanations from deep networks via gradient-based localization, In:2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy. IEEE, 2017. [37] Z.Y. Xu, S.Z. Wang, X.L. Zhang, G.W. He, Optimal sensor placement for ensemble-based data assimilation using gradient-weighted class activation mapping, J. Comput. Phys. 514 (2024) 113224. [38] H.F. Kaiser, A second generation little jiffy, Psychometrika 35 (4) (1970) 401-415. |