[1] C.W. Tang, J.L. Huang, M. Xu, X. Liu, F. Yang, W.T. Feng, Z.N. He, J.C. Lv, Attention-based early warning framework for abnormal operating conditions in fluid catalytic cracking units, Appl. Soft Comput. 153 (2024) 111275. [2] S. Cai, L.B. Zhang, J.Q. Hu, Scale-reasoning based risk propagation analysis: an application to fluid catalytic cracking unit, Process. Saf. Environ. Prot. 120 (2018) 155-165. [3] M. Bulut, O. Evrencan, Planning of prescriptive maintenance types for generator with fuzzy logic-based genetic algorithm in a hydroelectric power plant, Expert Syst. Appl. 240 (2024) 122480. [4] S. Gupta, A. Kumar, J. Maiti, A critical review on system architecture, techniques, trends and challenges in intelligent predictive maintenance, Saf. Sci. 177 (2024) 106590. [5] M. Tanhaeean, S.F. Ghaderi, M. Sheikhalishahi, A decision-making framework for optimal maintenance management: an integrated simulation-mathematical programming-expert system approach, Comput. Ind. Eng. 185 (2023) 109671. [6] R. Parkavi, P. Karthikeyan, A. Sheik Abdullah, Enhancing personalized learning with explainable AI: a chaotic particle swarm optimization based decision support system, Appl. Soft Comput. 156 (2024) 111451. [7] J.R. Liang, Y. Tian, S.T. Yang, Y. Wang, R.Q. Yin, Y.F. Wang, Long-term operation optimization of circulating cooling water systems under fouling conditions, Chin. J. Chem. Eng. 65 (2024) 255-267. [8] L. Basora, A. Viens, M.A. Chao, X. Olive, A benchmark on uncertainty quantification for deep learning prognostics, Reliab. Eng. Syst. Saf. 253 (2025) 110513. [9] R.Q. Wang, Y.F. Wang, T. Gundersen, Y. Wu, X. Feng, M.X. Liu, A multi-objective optimization method for industrial park layout design: The trade-off between economy and safety, Chem. Eng. Sci. 235 (2021) 116471. [10] F.N. Shahmohammad, Y. Pourrahimian, N. Akbari-Gharalari, Synthesizing complexity: Trends, challenges, and future directions in fuzzy-based multicriteria decision-making (FMCDM) methods, Appl. Soft Comput. 167 (2024) 112362. [11] F. Mumali, J. Kalkowska, Intelligent support in manufacturing process selection based on artificial neural networks, fuzzy logic, and genetic algorithms: Current state and future perspectives, Comput. Ind. Eng. 193 (2024) 110272. [12] R. Xu, B.W. Kim, S.J.S. Moe, A.N. Khan, K. Kim, D.H. Kim, Predictive worker safety assessment through on-site correspondence using multi-layer fuzzy logic in outdoor construction environments, Heliyon 9 (9) (2023) e19408. [13] E. Brazalez, H. Macia, G. Diaz, M. Baeza_Romero, E. Valero, V. Valero, FUME: an air quality decision support system for cities based on CEP technology and fuzzy logic, Appl. Soft Comput. 129 (2022) 109536. [14] Y.T. Qian, S. Vaddiraju, F. Khan, Inherent Process Risk Index (IPRI)-A tool for analyzing inherently safer design using Aspen Plus simulation, Process. Saf. Environ. Prot. 183 (2024) 399-416. [15] J.H. Lin, G. Michailidis, A multi-task encoder-dual-decoder framework for mixed frequency data prediction, Int. J. Forecast. 40 (3) (2024) 942-957. [16] R. Saeidimesineh, P. Adibi, H. Karshenas, A. Darvishy, Parallel encoder-decoder framework for image captioning, Knowl. Based Syst. 282 (2023) 111056. [17] J.Y. Guo, Y.L. Yang, H. Li, L. Dai, B.K. Huang, A parallel deep neural network for intelligent fault diagnosis of drilling pumps, Eng. Appl. Artif. Intell. 133 (2024) 108071. [18] Z.Y. Yao, Q.C. Jiang, X.S. Gu, Distributed process monitoring based on Kantorovich distance-multiblock variational autoencoder and Bayesian inference, Chin. J. Chem. Eng. 73 (2024) 311-323. [19] L. Jiang, T.A. Zhang, W. Lei, K.J. Zhuang, Y.B. Li, A new convolutional dual-channel Transformer network with time window concatenation for remaining useful life prediction of rolling bearings, Adv. Eng. Inform. 56 (2023) 101966. [20] J.H. Dai, W.Y. Huang, C.C. Zhang, J. Liu, Multi-label feature selection by strongly relevant label gain and label mutual aid, Pattern Recognit. 145 (2024) 109945. [21] I. Nino-Adan, D. Manjarres, I. Landa-Torres, E. Portillo, Feature weighting methods: a review, Expert Syst. Appl. 184 (2021) 115424. [22] L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility, Fuzzy Sets Syst. 100 (1999) 9-34. [23] E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man Mach. Stud. 7 (1) (1975) 1-13. [24] M. Robnik-Sikonja, I. Kononenko, Theoretical and empirical analysis of ReliefF and RReliefF, MACH LEARN. 53 (2003) 23-69. [25] N. Spolaor, E.A. Cherman, M.C. Monard, H.D. Lee, ReliefF for multi-label feature selection, 2013 Brazilian Conference on Intelligent Systems. October 19-24, 2013, Fortaleza, Brazil. IEEE, (2013) 6-11. [26] N. Liu, J. Wang, S.L. Sun, C.K. Li, W.D. Tian, Optimized principal component analysis and multi-state Bayesian network integrated method for chemical process monitoring and variable state prediction, Chem. Eng. J. 430 (2022) 132617. |