[1] X.T. Bi, R.S. Qin, D.Y. Wu, S.D. Zheng, J.S. Zhao, One step forward for smart chemical process fault detection and diagnosis, Comput. Chem. Eng. 164 (2022) 107884. [2] S. Chauhan, G. Vashishtha, R. Zimroz, Analysing recent breakthroughs in fault diagnosis through sensor: a comprehensive overview, Comput. Model. Eng. Sci. 141 (3) (2024) 1983-2020. [3] Q. Liao, Y.F. Wang, H.R. Zhang, Recent advances in intelligent oil and gas engineering, Chem. Eng. Res. Des. 188 (2022) 1011-1012. [4] M. Suvarna, K.S. Yap, W.T. Yang, J. Li, Y.T. Ng, X.N. Wang, Cyber-physical production systems for data-driven, decentralized, and secure manufacturing: a perspective, Engineering 7 (9) (2021) 1212-1223. [5] Z.Y. He, H.D. Shao, J.S. Cheng, Y. Yang, J.W. Xiang, Kernel flexible and displaceable convex hull based tensor machine for gearbox fault intelligent diagnosis with multi-source signals, Measurement 163 (2020) 107965. [6] J. Tang, J.F. Qiao, Z. Liu, N. Sheng, W. Yu, G. Yu, Dual-layer optimized selective information fusion using multi-source multi-component mechanical signals for mill load parameters forecasting, Mech. Syst. Signal Process. 135 (2020) 106371. [7] J. Tang, J.F. Qiao, Z.W. Wu, T.Y. Chai, J. Zhang, W. Yu, Vibration and acoustic frequency spectra for industrial process modeling using selective fusion multi-condition samples and multi-source features, Mech. Syst. Signal Process. 99 (2018) 142-168. [8] Y.J. Zhang, J.L. Wang, Do high-frequency stock market data help forecast crude oil prices? Evidence from the MIDAS models, Energy Econ. 78 (2019) 192-201. [9] X. Zhao, M. Han, L.L. Ding, W.L. Kang, Usefulness of economic and energy data at different frequencies for carbon price forecasting in the EU ETS, Appl. Energy 216 (2018) 132-141. [10] E. Andreou, E. Ghysels, A. Kourtellos, Regression models with mixed sampling frequencies, J. Econom. 158 (2) (2010) 246-261. [11] A.G. Rameshrao, E. Koley, S. Ghosh, Reliability enhancement of hybrid microgrid protection against communication data loss and converter faults using cubic-spline interpolation, Savitzky Golay filtering and GRU network, Comput. Electr. Eng. 116 (2024) 109144. [12] H.G. Han, M.T. Sun, H.Y. Han, X.L. Wu, J.F. Qiao, Univariate imputation method for recovering missing data in wastewater treatment process, Chin. J. Chem. Eng. 53 (2023) 201-210. [13] T.Y. Gao, J.L. Yang, Q. Tang, A multi-source domain information fusion network for rotating machinery fault diagnosis under variable operating conditions, Inf. Fusion 106 (2024) 102278. [14] Y.M. An, Y.G. Dang, J.J. Wang, H.M. Zhou, S.T. Mai, Mixed-frequency data sampling grey system model: forecasting annual CO2 emissions in China with quarterly and monthly economic-energy indicators, Appl. Energy 370 (2024) 123531. [15] J.H. Lin, G. Michailidis, A multi-task encoder-dual-decoder framework for mixed frequency data prediction, Int. J. Forecast. 40 (3) (2024) 942-957. [16] L. Allen, H.P. Lu, J. Cordiner, Knowledge-enhanced spatiotemporal analysis for anomaly detection in process manufacturing, Comput. Ind. 161 (2024) 104111. [17] A. Bhakte, V. Pakkiriswamy, R. Srinivasan, An explainable artificial intelligence based approach for interpretation of fault classification results from deep neural networks, Chem. Eng. Sci. 250 (2022) 117373. [18] H.H. Gao, C. Wei, W.J. Huang, X.J. Gao, Multimode process monitoring based on hierarchical mode identification and stacked denoising autoencoder, Chem. Eng. Sci. 253 (2022) 117556. [19] L. Liu, H.T. Zhao, Z.W. Hu, Graph dynamic autoencoder for fault detection, Chem. Eng. Sci. 254 (2022) 117637. [20] H. Wang, S.H. Wang, W.F. Sun, J.W. Xiang, Multi-sensor signal fusion for tool wear condition monitoring using denoising transformer auto-encoder Resnet, J. Manuf. Process. 124 (2024) 1054-1064. [21] S. Zhang, T. Qiu, Semi-supervised LSTM ladder autoencoder for chemical process fault diagnosis and localization, Chem. Eng. Sci. 251 (2022) 117467. [22] S. Plakias, Y.S. Boutalis, A novel information processing method based on an ensemble of Auto-Encoders for unsupervised fault detection, Comput. Ind. 142 (2022) 103743. [23] Y. Jing, X.L. Ge, B.T. Liu, Toward understandable semi-supervised learning fault diagnosis of chemical processes based on long short-term memory ladder autoencoder (LSTM-LAE) and self-attention (SA), Comput. Chem. Eng. 189 (2024) 108817. [24] C.Y. Ding, S.L. Sun, J. Zhao, MST-GAT: a multimodal spatial-temporal graph attention network for time series anomaly detection, Inf. Fusion 89 (2023) 527-536. [25] M.W. Jia, D.Y. Xu, T. Yang, Y. Yao, Y. Liu, Graph-guided masked autoencoder for process anomaly detection, Process. Saf. Environ. Prot. 186 (2024) 1345-1357. [26] J.J. Luo, Z.H. Jin, H.P. Jin, Q. Li, X. Ji, Y.Y. Dai, Causal temporal graph attention network for fault diagnosis of chemical processes, Chin. J. Chem. Eng. 70 (2024) 20-32. [27] J. Seo, Y. Noh, Y.J. Kang, J. Lim, S. Ahn, I. Song, K.C. Kim, Graph neural networks for anomaly detection and diagnosis in hydrogen extraction systems, Eng. Appl. Artif. Intell. 135 (2024) 108846. [28] Y.F. Shi, B. Wang, Y.W. Yu, X.F. Tang, C. Huang, J.Y. Dong, Robust anomaly detection for multivariate time series through temporal GCNs and attention-based VAE, Knowl. Based Syst. 275 (2023) 110725. [29] S.L. Sun, H. Ding, Z.D. Zhao, W.F. Xu, D. Wang, SCG-GFFE: a Self-Constructed graph fault feature extractor based on graph Auto-encoder algorithm for unlabeled single-variable vibration signals of harmonic reducer, Adv. Eng. Inform. 62 (2024) 102579. [30] U. Goswami, H. Kodamana, M. Ramteke, Fault detection using graph neural differential auto-encoders (GNDAE), Comput. Chem. Eng. 189 (2024) 108775. [31] J.L. Zheng, X. Chen, C.H. Zhao, Coarse-to-fine condition identification for wide-range non-stationary processes driven by coupled condition indicators, Contr. Eng. Pract. 128 (2022) 105328. [32] J. Huang, X.Y. Sun, X. Yang, K.X. Peng, Fault detection for chemical processes based on non-stationarity sensitive cointegration analysis, ISA Trans. 129 (Pt B) (2022) 321-333. [33] C.H. Zhao, Perspectives on nonstationary process monitoring in the era of industrial artificial intelligence, J. Process. Contr. 116 (2022) 255-272. [34] L. Lin, L.Z. Zu, S. Fu, Y.K. Liu, S.H. Zhang, S.W. Suo, C.S. Tong, Integrating adversarial training strategies into deep autoencoders: a novel aeroengine anomaly detection framework, Eng. Appl. Artif. Intell. 136 (2024) 108856. [35] L.J. Wang, H.H. Chen, L.Q. Yang, J.L. Li, Y. Li, X.N. Wang, Single-atom catalysts property prediction via Supervised and Self-Supervised pre-training models, Chem. Eng. J. 487 (2024) 150626. [36] Y. Liu, K. Huang, B.J. Ma, K. Wei, Y. Li, C. Yang, W. Gui, Quality-related fault detection for dynamic process based on quality-driven long short-term memory network and autoencoder, Neural Netw. 181 (2025) 106819. [37] Y.T. Li, K. Wu, J. Liu, Self-paced ARIMA for robust time series prediction, Knowl. Based Syst. 269 (2023) 110489. [38] H. Liu, Y.C. Sun, W.H. Ding, H.L. Wu, H.Y. Zhang, Enhancing non-stationary feature learning for remaining useful life prediction of aero-engine under multiple operating conditions, Measurement 227 (2024) 114242. [39] D.P.Kingma, J. Ba, Adam: A Method for Stochastic Optimization, In:International Conference on Learning Representations (ICLR) 2015,San Diego, California, USA,2015. [40] J.Y. Luo, X.Y. Kong, C.H. Hu, H.Z. Li, Key-performance-indicators-related fault subspace extraction for the reconstruction-based fault diagnosis, Measurement 186 (2021) 110119. [41] J.H. Yu, X. Gao, B.F. Li, F. Zhai, J.S. Lu, B. Xue, S.Y. Fu, C. Xiao, A filter-augmented auto-encoder with learnable normalization for robust multivariate time series anomaly detection, Neural Netw. 170 (2024) 478-493. [42] Y. Wang, H. Wu, J. Zhang, Z. Gao, J. Wang, P.S. Yu, M. Long, M. Long, PredRNN: a recurrent neural network for spatiotemporal predictive learning, IEEE Trans. Pattern Anal. Mach. Intell. 45 (2) (2023) 2208-2225. |