Chinese Journal of Chemical Engineering ›› 2025, Vol. 86 ›› Issue (10): 87-103.DOI: 10.1016/j.cjche.2025.07.003
Previous Articles Next Articles
Kaisheng Xiao1, Siyu Sun1, Jing Xu2, Xiang Ma1
Received:2025-03-30
Revised:2025-07-03
Accepted:2025-07-04
Online:2025-08-07
Published:2025-10-28
Contact:
Jing Xu,E-mail:xujing@ecust.edu.cn;Xiang Ma,E-mail:maxiang@ecust.edu.cn
Supported by:Kaisheng Xiao1, Siyu Sun1, Jing Xu2, Xiang Ma1
通讯作者:
Jing Xu,E-mail:xujing@ecust.edu.cn;Xiang Ma,E-mail:maxiang@ecust.edu.cn
基金资助:Kaisheng Xiao, Siyu Sun, Jing Xu, Xiang Ma. Advances in bio-based organic room-temperature phosphorescent materials from preparation to emerging applications[J]. Chinese Journal of Chemical Engineering, 2025, 86(10): 87-103.
Kaisheng Xiao, Siyu Sun, Jing Xu, Xiang Ma. Advances in bio-based organic room-temperature phosphorescent materials from preparation to emerging applications[J]. 中国化学工程学报, 2025, 86(10): 87-103.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.07.003
| [1] M. Wang, W.M. Yin, Y.X. Zhai, J.Y. Zhou, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Solvent-free processing of lignin into robust room temperature phosphorescent materials, Nat. Commun. 16 (1) (2025) 2455. [2] Q.G. Chen, L.J. Qu, H. Hou, J.Y. Huang, C. Li, Y. Zhu, Y.K. Wang, X.H. Chen, Q. Zhou, Y. Yang, C.L. Yang, Long lifetimes white afterglow in slightly crosslinked polymer systems, Nat. Commun. 15 (1) (2024) 2947. [3] J.Y. Zhang, S. Xu, Z.J. Wang, P.R. Xue, W.J. Wang, L.Y. Zhang, Y.Q. Shi, W. Huang, R.F. Chen, Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing, Angew. Chem. Int. Ed. 60 (31) (2021) 17094-17101. [4] X.L. Nie, Y. Zhang, B. Wu, Z.Y. Ye, F. Gao, Y.X. Chen, C.F. Wang, D.L. Zhu, P. Alam, Z.J. Qiu, B.Z. Tang, Dynamic chirality in nature-inspired photonic crystal films: Ultralong room temperature phosphorescence and stimuli-responsive circularly polarized luminescence, ACS Nano 19 (11) (2025) 11221-11229. [5] H.Q. Gao, T.T. Zhang, Y.X. Lei, D. Jiao, B. Yu, W.Z. Yuan, J. Ji, Q. Jin, D. Ding, An organophosphorescence probe with ultralong lifetime and intrinsic tissue selectivity for specific tumor imaging and guided tumor surgery, Angew. Chem. Int. Ed. 63 (42) (2024) e202406651. [6] J. Gu, W. Yuan, K. Chang, C. Zhong, Y. Yuan, J. Li, Y. Zhang, T. Deng, Y. Fan, L. Yuan, S. Liu, Y. Xu, S. Ling, C. Li, Z. Zhao, Q. Li, Z. Li, B.Z. Tang, Organic materials with ultrabright phosphorescence at room temperature under physiological conditions for bioimaging, Angew. Chem. Int. Ed. 64 (3) (2025) e202415637. [7] J.S. Cheng, H. Sun, L.L. Zhou, G.V. Baryshnikov, M.W. Liu, S. Shen, H. Agren, L.L. Zhu, Electrostatic interaction-mediated 1: 1 complexes for high-contrast mitochondrial-targeted phosphorescence bioimaging, Sci. China Chem. 67 (10) (2024) 3406-3413. [8] T.Y. Zhou, T.W. Li, H.F. Zhang, R.L. Chai, Q. Zhao, P.L. Zhang, G.Y. Li, Q.W. Wang, C. Li, Y. Shu, Z. Fan, S.H. Li, Laser-rewritable room temperature phosphorescence based on in situ polymerized tartaric acid, Sci. China Chem. 67 (9) (2024) 3029-3038. [9] X. Peng, P. Zou, J. Zeng, X. Wu, D. Xie, Y. Fu, D. Yang, D. Ma, B.Z. Tang, Z. Zhao, Purely organic room-temperature phosphorescence molecule for high-performance non-doped organic light-emitting diodes, Angew. Chem. Int. Ed. 63 (29) (2024) e202405418. [10] T. Wang, X.G. Su, X.P. Zhang, X.C. Nie, L.K. Huang, X.Y. Zhang, X. Sun, Y. Luo, G.Q. Zhang, Aggregation-induced dual-phosphorescence from organic molecules for nondoped light-emitting diodes, Adv. Mater. 31 (51) (2019) e1904273. [11] T. Aitasalo, P. Deren, J. Holsa, H. Jungner, J.C. Krupa, M. Lastusaari, J. Legendziewicz, J. Niittykoski, W. Strek, Persistent luminescence phenomena in materials doped with rare earth ions, J. Solid State Chem. 171 (1-2) (2003) 114-122. [12] D. Liu, W.J. Wang, P. Alam, Z. Yang, K.W. Wu, L.X. Zhu, Y. Xiong, S. Chang, Y. Liu, B. Wu, Q. Wu, Z.J. Qiu, Z. Zhao, B.Z. Tang, Highly efficient circularly polarized near-infrared phosphorescence in both solution and aggregate, Nat. Photonics 18 (2024) 1276-1284. [13] C.L. Chen, W.J. Zhang, Z. Wang, X. Wang, J.H. Yang, Y. Ren, Z.Q. Huang, W.B. Dai, X.B. Huang, Y.X. Lei, Large-area, ultra-thin organic films with both photochromic and phosphorescence properties, Angew. Chem. Int. Ed. 64 (18) (2025) e202501448. [14] Y.F. Zhang, Y. Su, H.W. Wu, Z.H. Wang, C. Wang, Y. Zheng, X. Zheng, L. Gao, Q. Zhou, Y. Yang, X.H. Chen, C.L. Yang, Y.L. Zhao, Large-area, flexible, transparent, and long-lived polymer-based phosphorescence films, J. Am. Chem. Soc. 143 (34) (2021) 13675-13685. [15] F.M. Xiao, H.Q. Gao, Y.X. Lei, W.B. Dai, M.C. Liu, X.Y. Zheng, Z.X. Cai, X.B. Huang, H.Y. Wu, D. Ding, Guest-host doped strategy for constructing ultralong-lifetime near-infrared organic phosphorescence materials for bioimaging, Nat. Commun. 13 (1) (2022) 186. [16] Y. Li, Z.Q. Wu, Z.Z. Huang, C.J. Yin, H. Tian, X. Ma, Activatable red/near-infrared aqueous organic phosphorescence probes for improved time-resolved bioimaging, Natl. Sci. Rev. 12 (2) (2024) nwae383. [17] W.B. Dai, X.W. Niu, X.H. Wu, Y. Ren, Y.F. Zhang, G.C. Li, H. Su, Y.X. Lei, J.W. Xiao, J.B. Shi, B. Tong, Z.X. Cai, Y.P. Dong, Halogen bonding: A new platform for achieving multi-stimuli-responsive persistent phosphorescence, Angew. Chem. Int. Ed. 61 (13) (2022) e202200236. [18] Z. Yang, C. Xu, W. Li, Z. Mao, X. Ge, Q. Huang, H. Deng, J. Zhao, F.L. Gu, Y. Zhang, Z. Chi, Boosting the quantum efficiency of ultralong organic phosphorescence up to 52% via intramolecular halogen bonding, Angew. Chem. Int. Ed. 59 (40) (2020) 17451-17455. [19] X.G. Yang, D.P. Yan, Long-afterglow metal-organic frameworks: Reversible guest-induced phosphorescence tunability, Chem. Sci. 7 (7) (2016) 4519-4526. [20] L.F. Zeng, Z.C. Zhu, R.Q. Mo, W. Li, W.L. Xu, D. Tian, Luminescence lifetime tuning of non-conjugated organic clusters through external heavy-atom effect for smartphone-based time-resolved imaging, Chem. Eng. J. 460 (2023) 141452. [21] F. Peng, Y.A. Chen, H.C. Liu, P. Chen, F. Peng, H.S. Qi, Color-tunable, excitation-dependent, and water stimulus-responsive room-temperature phosphorescence cellulose for versatile applications, Adv. Mater. 35 (46) (2023) e2304032. [22] Y.X. Zhai, S.J. Li, J. Li, S.X. Liu, T.D. James, J.L. Sessler, Z.J. Chen, Room temperature phosphorescence from natural wood activated by external chloride anion treatment, Nat. Commun. 14 (1) (2023) 2614. [23] Z.C. Zhu, L.F. Zeng, W. Li, W.L. Xu, D. Tian, Efficient persistent luminescence from cellulose-halide mixtures for optical encryption, ACS Sustain. Chem. Eng. 10 (50) (2022) 16752-16759. [24] J.M. Song, Y.H. Zhou, Z.C. Pan, Y. Hu, Z.Y. He, H. Tian, X. Ma, An elastic organic crystal with multilevel stimuli-responsive room temperature phosphorescence, Matter 6 (6) (2023) 2005-2018. [25] E. Hamzehpoor, D.F. Perepichka, Crystal engineering of room temperature phosphorescence in organic solids, Angew. Chem. Int. Ed. 59 (25) (2020) 9977-9981. [26] P. Jiang, B.B. Ding, T. Li, C. Wang, Z.Y. Wang, W.B. Liu, X. Ma, Fine regulation of charge recombination for multi-color persistent luminescence, Sci. China Chem. (2025). [27] J.Y. Li, S.B. Hao, M.K. Li, Y.Q. Chen, H.L. Li, S.Q. Wu, S.R. Yang, L. Dang, S.J. Su, M.D. Li, Triplet energy gap-regulated room temperature phosphorescence in host-guest doped systems, Angew. Chem. Int. Ed. 64 (5) (2025) e202417426. [28] Z.S. Gao, X. Yan, Q. Jia, J.R. Zhang, G.Y. Guo, H.H. Li, H. Li, G.Z. Xie, Y. Tao, R.F. Chen, Stimulating chiral selective expression of room temperature phosphorescence for chirality recognition, Adv. Sci. 11 (44) (2024) e2410671. [29] Z.X. Zhou, X. Wang, A.Q. Lv, M.J. Ding, Z.C. Song, H.L. Ma, Z.F. An, W. Huang, Achieving efficient X-ray scintillation of purely organic phosphorescent materials by chromophore confinement, Adv. Mater. 36 (47) (2024) e2407916. [30] M. Yao, W. Wei, W.G. Qiao, Y. Zhang, X.P. Zhou, Z.A. Li, H.Y. Peng, X.L. Xie, High-security plastic with integrated holographic and phosphorescent images, Adv. Mater. 37 (12) (2025) e2414894. [31] S.M. Tang, S.N. Jiang, K.T. Wang, Y.S. Zhang, L.J. Yi, J.H. Hou, L.J. Qu, Y.L. Zhao, C.L. Yang, Cycloolefin copolymers with a multiply rigid structure for protecting triplet exciton from thermo- and moisture-quenching, Adv. Mater. 37 (10) (2025) e2416397. [32] H.Y. Yang, Y.F. Wang, X.K. Yao, H.L. Ma, J.M. Yu, X. Li, X. Wang, X.Y. Liang, Q.M. Peng, S.Z. Cai, Z.F. An, W. Huang, Efficient and ultralong room temperature phosphorescence from isolated molecules under visible light excitation, J. Am. Chem. Soc. 147 (2) (2025) 1474-1481. [33] J. Yuan, S. Wang, Y. Ji, R.F. Chen, Q. Zhu, Y.R. Wang, C. Zheng, Y. Tao, Q.L. Fan, W. Huang, Invoking ultralong room temperature phosphorescence of purely organic compounds through H-aggregation engineering, Mater. Horiz. 6 (6) (2019) 1259-1264. [34] S. Li, L.Y. Fu, X.X. Xiao, H. Geng, Q. Liao, Y. Liao, H.B. Fu, Regulation of thermally activated delayed fluorescence to room-temperature phosphorescent emission channels by controlling the excited-states dynamics via J- and H-aggregation, Angew. Chem. Int. Ed. 60 (33) (2021) 18059-18064. [35] L.J. Tu, Y.Y. Fan, C.J. Bi, L.Y. Xiao, Y.G. Li, A.S. Li, W.L. Che, Y.J. Xie, Y.F. Zhang, S.P. Xu, W.Q. Xu, Q.Q. Li, Z. Li, How temperature and hydrostatic pressure impact organic room temperature phosphorescence from H-aggregation of planar triarylboranes and the application in bioimaging, Sci. China Chem. 66 (3) (2023) 816-825. [36] W.X. Feng, D. Chen, Y. Zhao, B. Mu, H.X. Yan, M. Barboiu, Modulation of deep-red to near-infrared room-temperature charge-transfer phosphorescence of crystalline “pyrene box” cages by coupled ion/guest structural self-assembly, J. Am. Chem. Soc. 146 (4) (2024) 2484-2493. [37] C.J. Yin, Z.A. Yan, R.J. Yan, C. Xu, B.B. Ding, Y.H. Ji, X. Ma, A 3D phosphorescent supramolecular organic framework in aqueous solution, Adv. Funct. Mater. 34 (25) (2024) 2316008. [38] M.J. Gan, Y.Q. Niu, X.J. Qu, C.H. Zhou, Lignin to value-added chemicals and advanced materials: Extraction, degradation, and functionalization, Green Chem. 24 (20) (2022) 7705-7750. [39] S.O. Alaswad, A.S. Mahmoud, P. Arunachalam, Recent advances in biodegradable polymers and their biological applications: A brief review, Polymers 14 (22) (2022) 4924. [40] M.N. Cao, F. Liu, X.Z. Huo, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Producing naturally degradable room-temperature phosphorescent materials by covalently attaching lignin to natural polymers, Cell Rep. Phys. Sci. 5 (2) (2024) 101811. [41] M.A. Elsawy, K.H. Kim, J.W. Park, A. Deep, Hydrolytic degradation of polylactic acid (PLA) and its composites, Renew. Sustain. Energy Rev. 79 (2017) 1346-1352. [42] H. Thomas, T. Achenbach, I.M. Hodgkinson, Y. Spoerer, I. Kuehnert, C. Dornack, K.S. Schellhammer, S. Reineke, Room temperature phosphorescence from natural, organic emitters and their application in industrially compostable programmable luminescent tags, Adv. Mater. 36 (26) (2024) e2310674. [43] Y.Y. Gong, Y.Q. Tan, J. Mei, Y.R. Zhang, W.Z. Yuan, Y.M. Zhang, J.Z. Sun, B.Z. Tang, Room temperature phosphorescence from natural products: Crystallization matters, Sci. China Chem. 56 (9) (2013) 1178-1182. [44] X. Wang, X. Meng, T.T. Cui, Q. Hu, B.W. Jin, Y.S. He, X.J. Zhu, C.H. Ye, Highly transparent cellulose-based phosphorescent materials with tunable afterglow colors and white emission, Carbohydr. Polym. 341 (2024) 122309. [45] Z.Q. Lu, Q. Gao, M.C. Shi, Z.H. Su, G.G. Chen, H.S. Qi, B.Z. Lu, F. Peng, Colorful room-temperature phosphorescence including white afterglow from mechanical robust transparent wood for time delay lighting, Small Struct. 5 (7) (2024) 2300567. [46] Z.H. Xia, J.X. You, H.J. An, Y.R. Wang, J.M. Zhang, C.C. Yin, Y.H. Cheng, K.F. Jin, J. Zhang, Eco-friendly fractionation of natural straws: Sustainable ultralong room-temperature phosphorescence and super anti-ultraviolet materials, Sci. China Chem. 67 (7) (2024) 2373-2381. [47] Y.X. Zhai, J.Y. Zhou, B. Dang, X.P. Cui, S.X. Liu, X.T. Shi, R. Bi, J. Li, S.J. Li, O.J. Rojas, Z.J. Chen, Room-temperature phosphorescence from bamboo fibers and designed materials, ACS Mater. Lett. 7 (3) (2025) 1119-1126. [48] H.D. Guo, H.J. Cheng, R.X. Liu, X.X. Chen, L.Y. Wang, C.H. Yang, S.J. Li, S.X. Liu, J. Li, Q.J. Pan, T.D. James, Z.J. Chen, Red room temperature phosphorescence from lignin, Angew. Chem. Int. Ed. 64 (10) (2025) e202421112. [49] Y.Y. Qian, Y.X. Zhai, M. Li, Y.P. Qin, L. Lv, T.D. James, L.D. Wang, Z.J. Chen, Bio-based thermoplastic room temperature phosphorescent materials with closed-loop recyclability, Adv. Sci. 12 (17) (2025) e2414439. [50] K. Jin, X. Ji, J. Zhang, Q. Mi, J. Wu, J. Zhang, Colourful organic afterglow materials with super-wide color gamut and scaled processability from cellulose, Mater. Today Chem. 26 (2022) 101179. [51] Y.F. Cao, K.M. Zhang, H.Y. Wang, S.Y. Jiang, F.X. Lin, D.M. Guo, Y.C. Li, H.H. Huang, Z.Y. Yang, Z.G. Chi, Deep-red ultralong room temperature phosphorescence of chitosan-based nanofibrous membrane activated by carboxylic acids, Chem. Eng. J. 476 (2023) 146781. [52] Z.Y. Yuan, L. Zou, D.D. Chang, X. Ma, Conformation-dependent phosphorescence of galactose-decorated phosphors and assembling-induced phosphorescence enhancement, ACS Appl. Mater. Interfaces 12 (46) (2020) 52059-52069. [53] C.C. Bo, B.W. Wang, Q.L. Jia, Z.Y. Shen, W.S. Xu, J.Y. Liu, L.G. Chen, Y. Li, Y. Gou, X.L. Yan, Significant room-temperature phosphorescence enhancement induced by matrix complexes, Chem. Eng. J. 482 (2024) 148967. [54] K.L. Wan, Y.X. Zhai, S.X. Liu, J. Li, S.J. Li, B. Strehmel, Z.J. Chen, T.D. James, Sustainable afterglow room-temperature phosphorescence emission materials generated using natural phenolics, Angew. Chem. Int. Ed. 61 (31) (2022) e202202760. [55] M.L. Chen, C. Liu, H. Sun, F.L. Yang, D.F. Hou, Y.W. Zheng, R. Shi, X.H. He, X. Lin, Application of multicolor fluorescent carbon dots based on tea polyphenols in a white light-emitting diode and room-temperature phosphorescence, ACS Appl. Mater. Interfaces 16 (7) (2024) 9182-9189. [56] H.M. Zhang, L.L. Sun, X.J. Guo, J.Y. Xu, X.H. Zhao, Y.Z. Xia, Multicolor fluorescent/room temperature phosphorescent carbon dot composites for information encryption and anti-counterfeiting, Appl. Surf. Sci. 613 (2023) 155945. [57] Z. Wang, A. Li, Z. Zhao, T. Zhu, Q. Zhang, Y. Zhang, Y. Tan, W.Z. Yuan, Accessing excitation- and time-responsive afterglows from aqueous processable amorphous polymer films through doping and energy transfer, Adv. Mater. 34 (31) (2022) e2202182. [58] X. Dou, T. Zhu, Z. Wang, W. Sun, Y. Lai, K. Sui, Y. Tan, Y. Zhang, W.Z. Yuan, Color-tunable, excitation-dependent, and time-dependent afterglows from pure organic amorphous polymers, Adv. Mater. 32 (47) (2020) e2004768. [59] D. Li, Z. Liu, M. Fang, J. Yang, B.Z. Tang, Z. Li, Ultralong room-temperature phosphorescence with second-level lifetime in water based on cyclodextrin supramolecular assembly, ACS Nano 17 (13) (2023) 12895-12902. [60] D. Schilter, Fluorescence: Isolated rings do big things, Nat. Rev. Chem. 1 (12) (2017) 97. [61] T.J. Yang, Y.X. Li, Z.H. Zhao, W.Z. Yuan, Clustering-triggered phosphorescence of nonconventional luminophores, Sci. China Chem. 66 (2) (2023) 367-387. [62] Q. Gao, J. Rao, Z.W. Lv, M.C. Shi, M.X. Chen, G.G. Chen, X. Hao, B.Z. Lu, F. Peng, Stereospecific redox-mediated clusterization reconstruction for constructing long-lived, color-tunable, and processable phosphorescence cellulose, Chem. Eng. J. 451 (2023) 138923. [63] X. Zhang, Y.H. Cheng, J.X. You, J.M. Zhang, C.C. Yin, J. Zhang, Ultralong phosphorescence cellulose with excellent anti-bacterial, water-resistant and ease-to-process performance, Nat. Commun. 13 (1) (2022) 1117. [64] W.Z. Yuan, Y.M. Zhang, Nonconventional macromolecular luminogens with aggregation-induced emission characteristics, J. Polym. Sci. Part A Polym. Chem. 55 (4) (2017) 560-574. [65] Y.L. Gao, Q.N. Zhang, F.F. Wang, P.C. Sun, Wide-range tunable phosphorescence emission in cellulose-based materials enabled by complementary-color phosphors, Chem. Eng. J. 471 (2023) 144665. [66] Q. Gao, M.C. Shi, M.X. Chen, X. Hao, G.G. Chen, J. Bian, B.Z. Lu, J.L. Ren, F. Peng, Facile preparation of full-color tunable room temperature phosphorescence cellulose via click chemistry, Small 20 (13) (2024) e2309131. [67] B.Z. Lu, Q. Gao, P.Y. Li, J. Rao, Z.W. Lv, M.C. Shi, Y.J. Hu, X. Hao, G.G. Chen, M.Z. Yin, F. Peng, Natural ultralong hemicelluloses phosphorescence, Cell Rep. Phys. Sci. 3 (9) (2022) 101015. [68] X. Dou, Q. Zhou, X. Chen, Y. Tan, X. He, P. Lu, K. Sui, B.Z. Tang, Y. Zhang, W.Z. Yuan, Clustering-triggered emission and persistent room temperature phosphorescence of sodium alginate, Biomacromolecules 19 (6) (2018) 2014-2022. [69] H. Wang, Y. Qian, Q.Y. Li, Y.C. Liu, H.J. Qin, Z.C. Zhu, W. Li, F.S. Zhang, G.Y. Qing, Top-down approach for easy processing, cost-effective, biodegradable chiral photonic materials with spontaneous circularly polarized room-temperature phosphorescence activity, Chem. Eng. J. 507 (2025) 160357. [70] X.H. Chen, W.J. Luo, H.L. Ma, Q. Peng, W.Z. Yuan, Y.M. Zhang, Prevalent intrinsic emission from nonaromatic amino acids and poly(amino acids), Sci. China Chem. 61 (3) (2018) 351-359. [71] L.L. Du, G. He, Y.Y. Gong, W.Z. Yuan, S. Wang, C.B. Yu, Y.L. Liu, C. Wei, Efficient persistent room temperature phosphorescence achieved through Zn2+ doped sodium carboxymethyl cellulose composites, Compos. Commun. 8 (2018) 106-110. [72] L.L. Du, B.L. Jiang, X.H. Chen, Y.Z. Wang, L.M. Zou, Y.L. Liu, Y.Y. Gong, C. Wei, W.Z. Yuan, Clustering-triggered emission of cellulose and its derivatives, Chin. J. Polym. Sci. 37 (4) (2019) 409-415. [73] Z.C. Zhu, L.F. Zeng, W. Li, D. Tian, W.L. Xu, Enhancing persistent luminescence of cellulose by dehydration for label-free time-resolved imaging, ACS Sustain. Chem. Eng. 9 (51) (2021) 17420-17426. [74] J.X. You, X. Zhang, Q.Y. Nan, K.F. Jin, J.M. Zhang, Y.R. Wang, C.C. Yin, Z.Y. Yang, J. Zhang, Aggregation-regulated room-temperature phosphorescence materials with multi-mode emission, adjustable excitation-dependence and visible-light excitation, Nat. Commun. 14 (1) (2023) 4163. [75] Q. Gao, M.C. Shi, Z.Q. Lu, Q. Zhao, G.G. Chen, J. Bian, H.S. Qi, J.L. Ren, B.Z. Lu, F. Peng, Large-scale preparation for multicolor stimulus-responsive room-temperature phosphorescence paper via cellulose heterogeneous reaction, Adv. Mater. 35 (47) (2023) e2305126. [76] Q. Gao, M.C. Shi, J. Rao, Z.H. Su, G.G. Chen, B.Z. Lu, J. Bian, F. Peng, Fully exploiting clusterization-triggered room temperature phosphorescence of cellulose by stepwise rigidification for long-lived and excitation wavelength-dependent afterglows, Adv. Funct. Mater. 34 (40) (2024) 2403977. [77] R.X. Liu, H.D. Guo, M.N. Cao, B. Dang, Y.X. Zhai, S.X. Liu, S.J. Li, J. Li, T.D. James, Z.J. Chen, Producing a room temperature phosphorescent film from natural wood using a top-down approach, Adv. Funct. Mater. 34 (12) (2024) 2312254. [78] X.F. Luo, B. Tian, Y.X. Zhai, H.D. Guo, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Room-temperature phosphorescent materials derived from natural resources, Nat. Rev. Chem. 7 (11) (2023) 800-812. [79] Y.Y. Xue, X.Q. Qiu, Y. Wu, Y. Qian, M.S. Zhou, Y.H. Deng, Y. Li, Aggregation-induced emission: The origin of lignin fluorescence, Polym. Chem. 7 (21) (2016) 3502-3508. [80] R.H. Liu, T. Jiang, D.Z. Liu, X. Ma, A facile and green strategy to obtain organic room-temperature phosphorescence from natural lignin, Sci. China Chem. 65 (6) (2022) 1100-1104. [81] J.W. Yuan, Y.X. Zhai, K.L. Wan, S.X. Liu, J. Li, S.J. Li, Z.J. Chen, T.D. James, Sustainable afterglow materials from lignin inspired by wood phosphorescence, Cell Rep. Phys. Sci. 2 (9) (2021) 100542. [82] J.Y. Zhou, B. Tian, Y.X. Zhai, M. Wang, S.X. Liu, J. Li, S.J. Li, T.D. James, Z.J. Chen, Photoactivated room temperature phosphorescence from lignin, Nat. Commun. 15 (1) (2024) 7198. [83] X.F. Ma, Y. Xiong, Y.S. Liu, J.Q. Han, G.G. Duan, Y.M. Chen, S.J. He, C.T. Mei, S.H. Jiang, K. Zhang, When MOFs meet wood: From opportunities toward applications, Chem 8 (9) (2022) 2342-2361. [84] K.L. Wan, B. Tian, Y.X. Zhai, Y.X. Liu, H. Wang, S.X. Liu, S.J. Li, W.P. Ye, Z.F. An, C.Z. Li, J. Li, T.D. James, Z.J. Chen, Structural materials with afterglow room temperature phosphorescence activated by lignin oxidation, Nat. Commun. 13 (1) (2022) 5508. [85] Y.X. Zhai, J.Y. Zhou, H.L. Bai, B. Tian, M.J. Xu, S.J. Li, S.X. Liu, T.D. James, Z.F. An, J. Li, Z.J. Chen, Producing sustainable flame-retardant room temperature phosphorescent materials from natural wood assisted by borax, Next Mater. 6 (2025) 100278. [86] W.M. Yin, B. Dang, Y.Y. Miao, S.J. Li, J. Li, S.X. Liu, T.D. James, Z.J. Chen, Producing sustainable room temperature phosphorescent materials using natural wood and sucrose, Cell Rep. Phys. Sci. 5 (2) (2024) 101792. [87] L.S. Zhang, F. Gu, P. Jiang, X. Ma, Visualization of solvent effect and oxygen content via a red room-temperature phosphorescent material, ACS Appl. Mater. Interfaces 16 (32) (2024) 42794-42801. [88] L. Zhou, J.M. Song, Z.Y. He, Y.W. Liu, P. Jiang, T. Li, X. Ma, Achieving efficient dark blue room-temperature phosphorescence with ultra-wide range tunable-lifetime, Angew. Chem. Int. Ed. 63 (22) (2024) e202403773. [89] D.F. Li, F.F. Lu, J. Wang, W.D. Hu, X.M. Cao, X. Ma, H. Tian, Amorphous metal-free room-temperature phosphorescent small molecules with multicolor photoluminescence via a host-guest and dual-emission strategy, J. Am. Chem. Soc. 140 (5) (2018) 1916-1923. [90] Q. Zhou, M. Liu, C.C. Li, S.J. Lu, B. Lei, J.T. Jiang, Y. Yin, Y.C. Zhang, Y.F. Shen, Tunable photoluminescence properties of cotton fiber with gradually changing crystallinity, Front. Chem. 10 (2022) 805252. [91] B.B. Ding, X. Ma, H. Tian, Recent advances of pure organic room temperature phosphorescence based on functional polymers, Acc. Mater. Res. 4 (10) (2023) 827-838. [92] X. Ma, J. Wang, H. Tian, Assembling-induced emission: An efficient approach for amorphous metal-free organic emitting materials with room-temperature phosphorescence, Acc. Chem. Res. 52 (3) (2019) 738-748. [93] E. Pashkina, A. Aktanova, O. Boeva, M. Bykova, E. Gavrilova, E. Goiman, E. Kovalenko, N. Saleh, L. Grishina, V. Kozlov, Evaluation of the immunosafety of cucurbit[n]uril in vivo, Pharmaceutics 16 (1) (2024) 127. [94] K.M. Zhang, D.M. Guo, T.Y. Tang, X.K. Fang, F.X. Lin, X. Long, F.F. Ke, X.Y. Ji, N.P. Chen, Z. Zhang, H.H. Huang, Z.G. Chi, Z.Y. Yang, Polylactic acid (PLA)-based persistent room-temperature phosphorescence polymer nanoparticles for bioimaging, ACS Appl. Mater. Interfaces 17 (10) (2025) 15177-15186. [95] X. Wang, Q. Miao, W.J. Zhang, Y. Zhou, R. Xiong, Y.Y. Duan, X. Meng, C.H. Ye, Switchable circular polarized phosphorescence enabled by cholesteric assembled nanocelluloses, Chem. Eng. J. 481 (2024) 148463. [96] X.L. Nie, J.Y. Gong, Z.Y. Ding, B. Wu, W.J. Wang, F. Gao, G.Q. Zhang, P. Alam, Y. Xiong, Z. Zhao, Z.J. Qiu, B.Z. Tang, Room temperature phosphorescent nanofiber membranes by bio-fermentation, Adv. Sci. 11 (33) (2024) 2405327. [97] M. Liu, F. Jin, W. Chen, Q.F. Wu, H.Y. Xu, Q. Zhou, L. Yang, Adjustable multicolor doped cellulose nanocrystal film with excitation and temperature dependence for all-weather anticounterfeiting in sunlight and darkness, ACS Sustain. Chem. Eng. 12 (2024) 9897-9907. [98] C.G. Ren, Z.S. Wang, H.L. Ou, T.J. Wang, Z.P. Zhao, Y.T. Wei, H. Yuan, Y.Q. Tan, W.Z. Yuan, Multi-responsive afterglows from aqueous processable amorphous polysaccharide films, Small Meth. 8 (2) (2024) 2300243. [99] G. Crini, Review: A history of cyclodextrins, Chem. Rev. 114 (21) (2014) 10940-10975. [100] X. Ma, J.J. Cao, Q.C. Wang, H. Tian, Photocontrolled reversible room temperature phosphorescence (RTP) encoding β-cyclodextrin pseudorotaxane, Chem. Commun. 47 (12) (2011) 3559-3561. [101] H. Chen, L. Xu, X. Ma, H. Tian, Room temperature phosphorescence of 4-bromo-1,8-naphthalic anhydride derivative-based polyacrylamide copolymer with photo-stimulated responsiveness, Polym. Chem. 7 (24) (2016) 3989-3992. [102] Z.Y. He, J.M. Song, C.L. Li, Z.Z. Huang, W.B. Liu, X. Ma, High-performance organic ultralong room temperature phosphorescence based on biomass macrocycle, Adv. Mater. 37 (11) (2025) e2418506. [103] M.Z. Zeng, T. Li, Y.C. Liu, X.L. Lin, X.H. Zu, Y.X. Mu, L.H. Chen, Y.P. Huo, Y.L. Qin, Cellulose-based photo-enhanced persistent room-temperature phosphorescent materials by space stacking effects, Chem. Eng. J. 446 (2022) 136935. [104] T. Zhang, J.P. Zhou, H.M. Li, J.L. Ma, X. Wang, H.Q. Shi, M.H. Niu, Y.S. Liu, F.S. Zhang, Y.Z. Guo, Stable lignin-based afterglow materials with ultralong phosphorescence lifetimes in solid-state and aqueous solution, Green Chem. 25 (4) (2023) 1406-1416. [105] J.X. You, C.C. Yin, S.H. Wang, X. Wang, K.F. Jin, Y.R. Wang, J.F. Wang, L. Liu, J. Zhang, J.M. Zhang, Responsive circularly polarized ultralong room temperature phosphorescence materials with easy-to-scale and chiral-sensing performance, Nat. Commun. 15 (1) (2024) 7149. [106] M.N. Cao, Y.R. Ren, Y. Wu, J.J. Shen, S.J. Li, Z.Q. Yu, S.X. Liu, J. Li, O.J. Rojas, Z.J. Chen, Biobased and biodegradable films exhibiting circularly polarized room temperature phosphorescence, Nat. Commun. 15 (1) (2024) 2375. [107] X. Zhang, Y.H. Cheng, J.X. You, J.M. Zhang, Y.R. Wang, J. Zhang, Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring, ACS Appl. Mater. Interfaces 14 (14) (2022) 16582-16591. |
| [1] | Qingchun Yang, Dongwen Rong, Qiwen Guo, Runjie Bao, Dawei Zhang. Ensemble learning-driven multi-objective optimization of the co-pyrolysis process of biomass and coal for high economic and environmental performance [J]. Chinese Journal of Chemical Engineering, 2025, 84(8): 23-34. |
| [2] | Gaohan Li, Lirui Mao, Ling Zhang, Qiaoli Wu, Hanxu Li. Synergetic mechanism between corn stalk biochar and coal pulping in coal-water slurry [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 1-14. |
| [3] | Qing Zhao, Hairong Yuan, Heran Wang, Xiujin Li. Enhancing biomethane production from corn stover via anaerobic digestion incorporated with microbial electrolysis cell [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 98-110. |
| [4] | Hongyang Liu, Li Zhang, Jiali Cai, Siyu Liu, Cuijiao Zhao, Shuyu Wang, Mengyu Zhao, Menglong Liu, Wenwen Ding, Hongjian Zhou, Weiji Dai, Saifang Huang. Biomass-derived nitrogen-doped porous carbon as a sustainable flowelectrode material for enhanced capacitive deionization [J]. Chinese Journal of Chemical Engineering, 2025, 83(7): 244-253. |
| [5] | Meiting Guo, Youting Wang, Ziliang Xie, Kok bing Tan, Fangsong Guo, Kang Sun, Jianchun Jiang, Guowu Zhan. Preparation and extrusion of ZSM-5 based on biomass templates for enhanced mechanical properties and catalytic pyrolysis performance [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 47-60. |
| [6] | Jing Wang, Xinwei Yang, Ruiping Zhang, Fengling Yang, Frédéric Marias, Fei Wang. NO reduction performance of pyrolyzed biomass char: Effects of dechlorination removal pretreatments [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 119-129. |
| [7] | Wei Zhang, Yuming Zhang, Haixin Wu, Xinyu Yang, Pei Qiao, Jiazhou Li, Zhewen Chen, Yan Wang. Investigation on the pyrolysis behaviors and kinetics of walnut shell lignocellulosic biomass with additives [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 303-314. |
| [8] | Chen Liang, Weiqiang Chen, Linghong Yin, Xianli Wu, Jie Xu, Chunhua Du, Wangda Qu. Properties evolutions during carbonization of carbon foam using lignin as sole precursor [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 33-43. |
| [9] | Zhiying Feng, Kaifeng Liu, Tao Zhu, Dongfang Li, Xing Zhu. CO2-gasification of corncob in a molten salt environment [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 58-66. |
| [10] | Jinhang Dai, Qingya Cao, Delong Yang, Gang Chen, Ziting Du, Song Wang, Fukun Li. 3-Acetamido-5-acetylfuran: An emerging renewable nitrogen-containing platform compound [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 263-272. |
| [11] | Di Wu, Ping Hu, Hui Li, Zhidan Xue, Hang Lv, Yimeng Guo, Changwei Hu, Liangfang Zhu. Influences of fractional separation on the structure and reactivity of wheat straw cellulose for producing 5-hydroxymethylfurfural [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 154-162. |
| [12] | Pengxing Yuan, Xiude Hu, Jingjing Ma, Tuo Guo, Qingjie Guo. Thermogravimetric characteristics of corn straw and bituminous coal copyrolysis based the ilmenite oxygen carriers [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 8-15. |
| [13] | Peng Jiang, Hao Zhang, Guanhan Zhao, Lin Li, Tuo Ji, Liwen Mu, Xiaohua Lu, Jiahua Zhu. A thermodynamic view on the in-situ carbon dioxide reduction by biomass-derived hydrogen during calcium carbonate decomposition [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 231-240. |
| [14] | Yifang Mi, Wenqiang Wang, Sen Zhang, Yalong Guo, Yufeng Zhao, Guojin Sun, Zhihai Cao. Ultra-high specific surface area activated carbon from Taihu cyanobacteria via KOH activation for enhanced methylene blue adsorption [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 106-116. |
| [15] | Yong-Yi Zeng, Xin-Yi Xu, Jin-Xuan Xie, Wen-Li Chen, Lan Liu, Xin-Jian Yin, Bi-Shuang Chen. Lipase and photodecarboxylase coexpression: A potential strategy for alkane-based biodiesel production from natural triglycerides [J]. Chinese Journal of Chemical Engineering, 2024, 67(3): 238-246. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
