Chinese Journal of Chemical Engineering ›› 2025, Vol. 87 ›› Issue (11): 252-261.DOI: 10.1016/j.cjche.2025.04.021
Previous Articles Next Articles
Hong Xiao, Shilei Yu, Yuhan Yan, Junjing Zhou, Rongfei Zhou, Weihong Xing
Received:2025-03-11
Revised:2025-04-22
Accepted:2025-04-24
Online:2025-07-01
Published:2025-11-28
Contact:
Rongfei Zhou,E-mail:rf-zhou@njtech.edu.cn
Supported by:Hong Xiao, Shilei Yu, Yuhan Yan, Junjing Zhou, Rongfei Zhou, Weihong Xing
通讯作者:
Rongfei Zhou,E-mail:rf-zhou@njtech.edu.cn
基金资助:Hong Xiao, Shilei Yu, Yuhan Yan, Junjing Zhou, Rongfei Zhou, Weihong Xing. High-performance 19-channel monolithic CHA zeolite membranes for vapor-permeation dehydration of acetic acid[J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 252-261.
Hong Xiao, Shilei Yu, Yuhan Yan, Junjing Zhou, Rongfei Zhou, Weihong Xing. High-performance 19-channel monolithic CHA zeolite membranes for vapor-permeation dehydration of acetic acid[J]. 中国化学工程学报, 2025, 87(11): 252-261.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2025.04.021
| [1] G. Merli, A. Becci, A. Amato, F. Beolchini, Acetic acid bioproduction: The technological innovation change, Sci. Total Environ. 798 (2021) 149292. [2] G. Deshmukh, H. Manyar, Production pathways of acetic acid and its versatile applications in the food industry. Biotechnological Applications of Biomass. IntechOpen, (2021), pp. [3] J.L. Martin-Espejo, J. Gandara-Loe, J.A. Odriozola, T.R. Reina, L. Pastor-Perez, Sustainable routes for acetic acid production: Traditional processes vs a low-carbon, biogas-based strategy, Sci. Total Environ. 840 (2022) 156663. [4] G.J. Sunley, D.J. Watson, High productivity methanol carbonylation catalysis using iridium The CativaTM process for the manufacture of acetic acid, Catal. Today 58 (4) (2000) 293-307. [5] T. Tsuru, T. Shibata, J.H. Wang, H.R. Lee, M. Kanezashi, T. Yoshioka, Pervaporation of acetic acid aqueous solutions by organosilica membranes, J. Membr. Sci. 421 (2012) 25-31. [6] N. Jullok, P. Luis, J. Degreve, B. Van der Bruggen, A cascaded pervaporation process for dehydration of acetic acid, Chem. Eng. Sci. 105 (2014) 208-212. [7] G.P. Liu, W.Q. Jin, Pervaporation membrane materials: Recent trends and perspectives, J. Membr. Sci. 636 (2021) 119557. [8] L.Q. Li, J.J. Li, L.J. Cheng, J.X. Wang, J.H. Yang, Microwave synthesis of high-quality mordenite membrane by a two-stage varying heating-rate procedure, J. Membr. Sci. 612 (2020) 118479. [9] F.Z. Charik, B. Achiou, A. Belgada, Z.C. Elidrissi, M. Ouammou, M. Rabiller-Baudry, S.A. Younssi, Optimal preparation of low-cost and high-permeation NaA zeolite membrane for effective ethanol dehydration, Microporous Mesoporous Mater. 344 (2022) 112229. [10] K.I. Okamoto, H. Kita, K. Horii, K.T. Kondo, Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures, Ind. Eng. Chem. Res. 40 (1) (2001) 163-175. [11] H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, K.I. Okamoto, Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures, J. Mater. Sci. Lett. 14 (3) (1995) 206-208. [12] L.Z. Li, Y. Lu, L.Q. Li, J.H. Yang, W.J. Fu, Y.W. Luo, J.M. Lu, Y. Zhang, L. Zhou, Highly selective zeolite T membranes with different ERI stacking faults for pervaporative dehydration of ethanol, J. Membr. Sci. 638 (2021) 119701. [13] J. Kuhn, K. Yajima, T. Tomita, J. Gross, F. Kapteijn, Dehydration performance of a hydrophobic DD3R zeolite membrane, J. Membr. Sci. 321 (2) (2008) 344-349. [14] X. Lin, E. Kikuchi, M. Matsukata, Preparation of mordenite membranes on α-alumina tubular supports for pervaporation of water-isopropyl alcohol mixtures, Chem. Commun. (11) (2000) 957-958. [15] Q. Wang, C. Qian, C.X. Guo, N. Xu, Q. Liu, B. Wang, L. Fan, K.H. Hu, Pervaporation dehydration mechanism and performance of high-aluminum ZSM-5 zeolite membranes for organic solvents, Int. J. Mol. Sci. 25 (14) (2024) 7723. [16] X. Lin, H. Kita, K.I. Okamoto, Silicalite membrane preparation, characterization, and separation performance, Ind. Eng. Chem. Res. 40 (19) (2001) 4069-4078. [17] Q. Liu, R.D. Noble, J.L. Falconer, H.H. Funke, Organics/water separation by pervaporation with a zeolite membrane, J. Membr. Sci. 117 (1-2) (1996) 163-174. [18] T. Sano, H. Yanagishita, Y. Kiyozumi, F. Mizukami, K. Haraya, Separation of ethanol/water mixture by silicalite membrane on pervaporation, J. Membr. Sci. 95 (3) (1994) 221-228. [19] Y. Cui, H. Kita, K.I. Okamoto, Zeolite T membrane: preparation, characterization, pervaporation of water/organic liquid mixtures and acid stability, J. Membr. Sci. 236 (1-2) (2004) 17-27. [20] J. Jiang, L. Peng, X.R. Wang, H. Qiu, M.M. Ji, X.H. Gu, Effect of Si/Al ratio in the framework on the pervaporation properties of hollow fiber CHA zeolite membranes, Microporous Mesoporous Mater. 273 (2019) 196-202. [21] Y. Hasegawa, H. Hotta, K. Sato, T. Nagase, F. Mizukami, Preparation of novel chabazite (CHA)-type zeolite layer on porous α-Al2O3 tube using template-free solution, J. Membr. Sci. 347 (1-2) (2010) 193-196. [22] H. Qiu, J. Jiang, L. Peng, H. Liu, X.H. Gu, Choline chloride templated CHA zeolite membranes for solvents dehydration with improved acid stability, Microporous Mesoporous Mater. 284 (2019) 170-176. [23] S. Imasaka, M. Itakura, K. Yano, S. Fujita, M. Okada, Y. Hasegawa, C. Abe, S. Araki, H. Yamamoto, Rapid preparation of high-silica CHA-type zeolite membranes and their separation properties, Sep. Purif. Technol. 199 (2018) 298-303. [24] H.L. Hong, K.L. Yu, H.B. Liu, R.F. Zhou, W.H. Xing, Industrial-scale 61-channel monolithic silicalite-1 membranes for butane isomer separation, Adv. Membr. 4 (2024) 100096. [25] Z.G. Xue, Y. Shen, L. Chen, B. Liu, N. Hu, R.F. Zhou, W.H. Xing, High-performance 19-channel monolithic chabazite membranes for efficient separation of water/ethanol and water/isopropanol mixtures by pervaporation and vapor permeation, J. Membr. Sci. 713 (2025) 123353. [26] B. Liu, R. Zhang, Y. Du, F. Gao, J.J. Zhou, R.F. Zhou, Highly selective high-silica SSZ-13 zeolite membranes for H2 production from syngas, Int. J. Hydrog. Energy 45 (32) (2020) 16210-16218. [27] L. Yu, M.S. Nobandegani, A. Holmgren, J. Hedlund, Highly permeable and selective tubular zeolite CHA membranes, J. Membr. Sci. 588 (2019) 117224. [28] D. Korelskiy, T. Leppajarvi, H. Zhou, M. Grahn, J. Tanskanen, J. Hedlund, High flux MFI membranes for pervaporation, J. Membr. Sci. 427 (2013) 381-389. [29] M. Pera-Titus, J. Llorens, F. Cunill, R. Mallada, J. Santamaria, Preparation of zeolite NaA membranes on the inner side of tubular supports by means of a controlled seeding technique, Catal. Today 104 (2-4) (2005) 281-287. [30] X.Q. Mo, H.B. Liu, Y.L. Li, Q.L. Gu, B. Wang, R.F. Zhou, W.H. Xing, SSZ-13 membranes on novel silica carbide monoliths for efficient CO2 separation, J. Membr. Sci. 699 (2024) 122642. [31] J.J. Zhou, S.J. Wu, B. Liu, R.F. Zhou, W.H. Xing, Scalable fabrication of highly selective SSZ-13 membranes on 19-channel monolithic supports for efficient CO2 capture, Sep. Purif. Technol. 293 (2022) 121122. [32] Y.M. Li, Y.L. Wang, M.Y. Guo, B. Liu, R.F. Zhou, Z.P. Lai, High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations, J. Membr. Sci. 629 (2021) 119277. [33] S. Kobuchi, K. Takakura, S. Yonezawa, K. Fukuchi, Y. Arai, Correlation of vapor-liquid equilibria of binary systems containing carboxylic acid by using Wilson equation with parameters estimated from pure-component properties, J. Chem. Eng. Japan / JCEJ 46 (2) (2013) 100-106. [34] D.H. Olson, M.A. Camblor, L.A. Villaescusa, G.H. Kuehl, Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58, Microporous Mesoporous Mater. 67 (1) (2004) 27-33. [35] N.N. Wang, N. Liu, J.J. Zhou, Q. Wang, N. Hu, R.F. Zhou, Large-area, high-permeance and acid-resistant zeolite SSZ-13 membranes for efficient pervaporative separation of water/acetic acid mixtures, J. Membr. Sci. 691 (2024) 122251. [36] Y.T. Zhang, X.F. Zhu, S.Z. Chen, J.Y. Liu, Z. Hong, J.C. Wang, Z. Li, X.C. Gao, R. Xu, X.H. Gu, TiO2-decorated NaA zeolite membranes with improved separation stability for pervaporation dehydration of N, N-Dimethylacetamide, J. Membr. Sci. 634 (2021) 119398. [37] Y.T. Zhang, S.Z. Chen, R. Shi, P. Du, X.F. Qiu, X.H. Gu, Pervaporation dehydration of acetic acid through hollow fiber supported DD3R zeolite membrane, Sep. Purif. Technol. 204 (2018) 234-242. [38] R.W. Baker, J.G. Wijmans, Y. Huang, Permeability, permeance and selectivity: a preferred way of reporting pervaporation performance data, J. Membr. Sci. 348 (1-2) (2010) 346-352. [39] J.H. Chen, J.Z. Zheng, Q.L. Liu, H.X. Guo, W. Weng, S.X. Li, Pervaporation dehydration of acetic acid using polyelectrolytes complex (PEC)/11-phosphotungstic acid hydrate (PW11) hybrid membrane (PEC/PW11), J. Membr. Sci. 429 (2013) 206-213. [40] Y.Q. Li, M.H. Zhu, N. Hu, F. Zhang, T. Wu, X.S. Chen, H. Kita, Scale-up of high performance mordenite membranes for dehydration of water-acetic acid mixtures, J. Membr. Sci. 564 (2018) 174-183. [41] T. Nagase, Y. Kiyozumi, Y. Hasegawa, T. Inoue, T. Ikeda, F. Mizukami, Dehydration of concentrated acetic acid solutions by pervaporation using novel MER zeolite membranes, Chem. Lett. 36 (5) (2007) 594-595. [42] K. Xu, Z.Q. Jiang, B. Feng, A.S. Huang, A graphene oxide layer as an acid-resisting barrier deposited on a zeolite LTA membrane for dehydration of acetic acid, RSC Adv. 6 (28) (2016) 23354-23359. [43] D.Y. Si, M.H. Zhu, X.M. Sun, M. Xue, Y.Q. Li, T. Wu, T. Gui, I. Kumakiri, X.S. Chen, H. Kita, Formation process and pervaporation of high aluminum ZSM-5 zeolite membrane with fluoride-containing and organic template-free gel, Sep. Purif. Technol. 257 (2021) 117963. [44] M.H. Zhu, I. Kumakiri, K. Tanaka, H. Kita, Dehydration of acetic acid and esterification product by acid-stable ZSM-5 membrane, Microporous Mesoporous Mater. 181 (2013) 47-53. [45] R. Yao, Y. Peng, H.L. Song, C.Y. Zhu, P.Y. Wang, L. Kun, W.S. Yang, Rational design and fabrication of a novel acid-resistant UZM-5 zeolite membrane for pervaporation dehydration processes, Chem. Commun. 57 (75) (2021) 9574-9577. |
| [1] | Xiangli Liu, Yiqing Zeng, Jiahao Chen, Zhaoxiang Zhong, Weihong Xing. Research progress on the monolithic catalyst for hydrogenation of CO2 to methane [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 184-197. |
| [2] | Jiayi Zhang, Jiali He, Guibing Wang, Yu Zhao, Huairong Zhou, Dongliang Wang, Dongqiang Zhang. Study on the recovery of NMP waste liquid in lithium battery production by coupled pervaporation–adsorption process and evaluation of technical and economic performances [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 273-283. |
| [3] | Mohammad Sohrabi, Reza Alizadeh, S. Majid Abdoli. Boron-modified ZSM-5 coated on honeycomb monolith surface for selective production of propylene from methanol [J]. Chinese Journal of Chemical Engineering, 2025, 88(12): 21-33. |
| [4] | Xiangli Liu, Fei Gao, Jingyang Huang, Yiqing Zeng, Zhaoxiang Zhong, Weihong Xing. Insights on the effect of Si-Al interaction on Ni/Al2O3/SiC monolithic catalysts for CO2 methanation [J]. Chinese Journal of Chemical Engineering, 2025, 87(11): 171-181. |
| [5] | Liqin Tang, Xiang Jin, Bing Gao, Xuechao Gao, Xuehong Gu. CPAM-assisted synthesis of NaA zeolite membrane on macroporous mullite hollow fiber for ethanol dehydration by pervaporation [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 66-80. |
| [6] | Huanxu Teng, Ronghui You, Huanyi Li, Siqi Shao, Qi Zhou, Ying Yang, Ting Wu, Meihua Zhu, Xiangshu Chen, Hidetoshi Kita. Pervaporation performance and characterization of hydrophilic ZSM-5 zeolite membranes for high inorganic acid and inorganic salts [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 27-33. |
| [7] | Omama Rehman, Youduo Wu, Quan Zhang, Jin Guo, Cuihuan Sun, Huipeng Gao, Yaqing Xu, Rui Xu, Ayesha Shahid, Chuang Xue. Acetic acid- and furfural-based adaptive evolution of Saccharomyces cerevisiae strains for improving stress tolerance and lignocellulosic ethanol production [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 26-33. |
| [8] | Yunyu Guo, Yiran Wang, Shu Zhang, Yi Wang, Song Hu, Jun Xiang, Walid Nabgan, Xun Hu. Steam reforming of acetic acid over Ni/biochar of low metal-loading: Involvement of biochar in tailoring reaction intermediates renders superior catalytic performance [J]. Chinese Journal of Chemical Engineering, 2024, 68(4): 241-252. |
| [9] | Meihua Zhu, Xingguo An, Tian Gui, Ting Wu, Yuqin Li, Xiangshu Chen. Effects of ion-exchange on the pervaporation performance and microstructure of NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 176-181. |
| [10] | Xingzhong Li, Kunlin Yu, Zibo He, Bo Liu, Rongfei Zhou, Weihong Xing. Improved SSZ-13 thin membranes fabricated by seeded-gel approach for efficient CO2 capture [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 273-280. |
| [11] | Huan Xiang, Huiping Zhang, Pengfei Liu, Ying Yan. Adsorption dynamics of ethane from air in structured fixed beds with different microfibrous composites [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 14-24. |
| [12] | Xueting Liu, Chunhui Hu, Jingjing Wu, Peng Cui, Fengyu Wei. Defective NH2-UiO-66 (Zr) effectively converting CO2 into cyclic carbonate under ambient pressure, solvent-free and co-catalyst-free conditions [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 222-229. |
| [13] | Hai-Long Liao, Bao-Ju Wang, Ya-Zhao Liu, Yong Luo, Jie-Xin Wang, Guang-Wen Chu, Jian-Feng Chen. Preparation of Pd/γ-Al2O3/nickel foam monolithic catalyst and its performance for selective hydrogenation in a rotating packed bed reactor [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 311-319. |
| [14] | Xiaopan Chen, Meihua Zhu, Sitong Xiang, Tian Gui, Ting Wu, Yuqin Li, Na Hu, Izumi Kumakiri, Xiangshu Chen, Hidetoshi Kita. Growth process and short chain alcohol separation performance of fluoride-containing NaY zeolite membrane [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 154-159. |
| [15] | Lijuan Zhang, Peng Hu, Jiang Pan, Huilei Yu, Jianhe Xu. Immobilization of trophic anaerobic acetogen for semi-continuous syngas fermentation [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 311-316. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
