Chin.J.Chem.Eng. ›› 2016, Vol. 24 ›› Issue (6): 719-727.DOI: 10.1016/j.cjche.2016.01.013
Previous Articles Next Articles
Xi Gao, Bo Kong, R. Dennis Vigil
Received:
2015-04-28
Revised:
2015-08-25
Online:
2016-07-12
Published:
2016-06-28
Contact:
Xi Gao
Supported by:
Supported by the National Science Foundation (CBET-1236676).
Xi Gao, Bo Kong, R. Dennis Vigil
通讯作者:
Xi Gao
基金资助:
Supported by the National Science Foundation (CBET-1236676).
Xi Gao, Bo Kong, R. Dennis Vigil. CFD simulation of bubbly turbulent Tayor-Couette flow[J]. Chin.J.Chem.Eng., 2016, 24(6): 719-727.
Xi Gao, Bo Kong, R. Dennis Vigil. CFD simulation of bubbly turbulent Tayor-Couette flow[J]. Chinese Journal of Chemical Engineering, 2016, 24(6): 719-727.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2016.01.013
[1] C.D. Andereck, S.S. Liu, H.L. Swinney, Flow regimes in a circular Couette systemwith independently rotating cylinders, J. Fluid Mech. 164(1986) 155-183.[2] A. Chouippe, E. Climent, D. Legendre, C. Gabillet, Numerical simulation of bubble dispersion in turbulent Taylor-Couette flow, Phys. Fluids 26(2014), 043304.[3] S. Vedantam, J.B. Joshi, Annular centrifugal extractors:A review, Chem. Eng. Res. Des. 84(2006) 522-542.[4] S. Vedantam, J.B. Joshi, S.B. Koganti, Three dimensional CFD simulation of stratified two-fluid Taylor-Couette flow, Can. J. Chem. Eng. 84(2006) 279-288.[5] D.D. Joseph, K. Nguyen, G.S. Beavers, Non-uniqueness and stability of the configuration of flow of immiscible fluids with different viscosities, J. Fluid Mech. 141(1984) 319-345.[6] Y. Renardy, D.D. Joseph, Couette flow of two fluids between concentric cylinders, J. Fluid Mech. 150(1985) 381-394.[7] D.D. Joseph, L. Preziosi, Stability of rigid motions and coating films in bicomponent flows of immiscible liquids, J. Fluid Mech. 185(1987) 323-329.[8] D.D. Joseph, P. Singh, K. Chen, Couette flows, rollers, emulsions, tall Taylor cells, phase separation and inversion, and a chaotic bubble in Taylor-Couette flow of two immiscible liquids, Nonlinear evolution of spatio-temporal structures in dissipative continuous systems, NATO ASI series, 2251990, pp. 169-189.[9] X.Y. Zhu, R.D. Vigil, Banded liquid-liquid Taylor-Couette-Poiseuille flow, AICHE J. 47(2001) (1932-1940).[10] X.Y. Zhu, R.J. Campero, R.D. Vigil, Axial mass transport in liquid-liquid Taylor-Couette-Poiseuille flow, Chem. Eng. Sci. 55(2000) 5078-5087.[11] R.J. Campero, R.D. Vigil, Spatiotemporal patterns in liquid-liquid Taylor-Couette-Poiseuille flow, Phys. Rev. Lett. 79(1997) 3897-3900.[12] R.J. Campero, R.D. Vigil, Flow patterns in liquid-liquid Taylor-Couette-Poiseuille flow, Chem. Res. 38(1999) 1094-1098.[13] Y. Shiomi, S. Nakanishi, H. Kutsuna, CFD calculation for two-phase flowin concentric annulus with rotating inner cylinder, PHOENICS users conference proceedings, phoenix2000.[14] K. Atkhen, J. Fontaine, J.E.Wesfreid, Highly turbulent couette-taylor bubbly flow patterns, J. Fluid Mech. 422(2000) 55-68.[15] H. Djéridi, C. Gabillet, J.Y. Billard, Two-phase Couette-Taylor flow:Arrangement of the dispersed phase and effects on the flow structures, Phys. Fluids 16(2004) 128-139.[16] H. Djéridi, J.F. Favé, J.Y. Billard, D.H. Fruman, Bubble capture and migration in Couette-Taylor flow, Exp. Fluids 26(1999) 233-239.[17] A. Mehel, C. Gabillet, H. Djeridi, Bubble effect on the structures of weakly turbulent Couette-Taylor flow, J. Fluids Eng. 128(2006) 819-831.[18] E. Climent, M. Simonnet, J. Magnaudet, Preferential accumulation of bubbles in Couette-Taylor flow patterns, Phys. Fluids 19(2007) 083301.[19] Y. Murai, H. Oiwa, Y. Takeda, Frictional drag reduction in bubbly Couette-Taylor flow, Phys. Fluids 20(2008) 034101.[20] G.J. Bernstein, D.E. Grosvenor, J.F. Lenc, N.M. Levitz, A high-capacity annular centrifugal contactor, Nucl. Technol. 20(1973) 200-202.[21] B. Kong, J.V. Shanks, R.D. Vigil, Enhanced algal growth rate in a Taylor vortex reactor, Biotechnol. Bioeng. 110(2013) 2140-2149.[22] B. Kong, R.D. Vigil, Light-limited continuous culture of Chlorella vulgaris in a Taylor vortex reactor, Environ. Prog. Sustainable Energy 32(2013) 884-890.[23] Y. Murai, H. Oiwa, Y. Takeda, Bubble behavior in a vertical Taylor-Couette flow, J. Phys. Conf. Ser. 14(2005) 143-156.[24] D.P.M. van Gils, D.N. Guzman, C. Sun, D. Lohse, The importance of bubble deformability for strong drag reduction in bubbly turbulent Taylor-Couette flow, J. Fluid Mech. 722(2013) 317-347.[25] T.H. van den Berg, S. Luther, D.P. Lathrop, D. Lohse, Drag reduction in bubbly Taylor-Couette turbulence, Phys. Rev. Lett. 94(2005) 044501.[26] S.L. Ceccio, Friction drag reduction of external flows with bubble and gas injection, Annu. Rev. Fluid Mech. 42(2010) 183-203.[27] K. Sugiyama, E. Calzavarini, D. Lohse, Microbubbly drag reduction in Taylor-Couette flow in the wavy vortex regime, J. Fluid Mech. 608(2008) 21-41.[28] X. Gao, B. Kong, R.D. Vigil, CFD investigation of bubble effects on Tayor-Couette flow patterns in the weakly turbulent vortex regime, Chem. Eng. J. 270(2015) 508-518.[29] M. Ramezani, B. Kong, X. Gao, M.G. Olsen, R.D. Vigil, Experimental measurement of oxygen mass transfer and bubble size distribution in an air-water multiphase Taylor-Couette vortex bioreactor, Chem. Eng. J. 279(2015) 286-296.[30] X. Gao, B. Kong, M. Ramezani, M.G. Olsen, R.D. Vigil, An adaptive model for gas-liquid mass transfer in a Taylor vortex reactor, Int. J. Heat Mass Transf. 91(2015) 433-445.[31] P.R. Fenstermacher, H.L. Swinney, J.P. Gollub, Dynamical instabilities and the transition to chaotic Taylor vortex flow, J. Fluid Mech. 94(1979) 103-128.[32] G.S. Lewis, H.L. Swinney, Velocity structure functions, scaling, and transitions in high-Reynolds-number Couette-Taylor flow, Phys. Rev. E 59(1999) 5457-5467.[33] S.G. Huisman, Roeland C.A. van der Veen, C. Sun, D. Lohse, Multiple states in highly turbulent Taylor-Couette flow, Nat. Commun. 5(2014) 3820.[34] D.P. Lathrop, J. Fineberg, H.L. Swinney, Transition to shear-driven turbulence in Couette-Taylor flow, Phys. Rev. A 46(1992) 6390-6405.[35] S.S. Deshmukh, S. Vedantam, J.B. Joshi, S.B. Koganti, Performance evaluation of an electrochemical reactor used to reduce Cr(VI) from aqueous media applying CFD simulations, Ind. Eng. Chem. Res. 46(2007) 8343-8354.[36] S.S. Deshmukh, J.B. Joshi, S.B. Koganti, Flow visualization and three-dimensional CFD simulation of the annular region of an annular centrifugal extractor, Ind. Eng. Chem. Res. 47(2008) 3677-3686.[37] S.S. Deshmukh, M.J. Sathe, J.B. Joshi, S.B. Koganti, Residence time distribution and flow patterns in the single-phase annular region of annular centrifugal extractor, Ind. Eng. Chem. Res. 48(2009) 37-46.[38] T.V. Tamhane, J.B. Joshi, U.K. Mudali, R. Natarajan, R.N. Patil, Axial mixing in annular centrifugal extractors, Chem. Eng. J. 2012(207-208) (2012) 462-472.[39] T.V. Tamhane, J.B. Joshi, R.N. Patil, Performance of annular centrifugal extractors:CFD simulation of flow pattern, axial mixing and extraction with chemical reaction, Chem. Eng. Sci. 110(2014) 134-143.[40] M.J. Sathe, S.S. Deshmukh, J.B. Joshi, S.B. Koganti, Computational fluid dynamics simulation and experimental investigation:study of two-phase liquid-liquid flow in a vertical Taylor-Couette contactor, Ind. Eng. Chem. Res. 49(2010) 14-28.[41] S. Vedantam, J.B. Joshi, S.B. Koganti, CFD simulation of RTD and mixing in the annular region of a Taylor-Couette contactor, Ind. Eng. Chem. Res. 45(2006) 6360-6367.[42] X. Gao, L.J. Wang, C. Wu, Y.W. Cheng, X. Li, Novel bubble-emulsion hydrodynamic model for gas-solid bubbling fluidized beds, Ind. Eng. Chem. Res. 52(2013) 10835-10844.[43] L. Schiller, Z. Naumann, A drag coefficient correlation, Z. Ver. Deutsch. Ing. 77(1935) 318-320.[44] D.A. Drew, R.T. Lahey, Analytical modeling of multiphase flow, in:M.C. Roco (Ed.), Particulate two-phase flow, Butterworth-Heinemann, Boston, MA 1993, pp. 509-566.[45] A. Behzadi, R.I. Issa, H. Rusche, Modelling of dispersed bubble and droplet flow at high phase fractions, Chem. Eng. Sci. 674(2004) 759-770.[46] S.P. Antal, R.T. Lahey, J.E. Flaherty, Analysis of phase distribution in fully developed laminar bubbly two-phase flow, Int. J. Multiphase Flow 17(1991) 635-652.[47] P. Chen, M.P. Dudukovic, J. Sanyal, Three-dimensional simulation of bubble column flows with bubble coalescence and breakup, AICHE J. 51(2005) 696.[48] Q.S. Huang, C. Yang, G.Z. Yu, Z.-S. Mao, CFD simulation of hydrodynamics and mass transfer in an internal airlift loop reactor using a steady two-fluid model, Chem. Eng. Sci. 65(2010) 5527-5536.[49] S. Talvy, A. Cockx, A. Liné, Modeling hydrodynamics of gas-liquid airlift reactor, AICHE J. 53(2007) 335-353.[50] D.C. Wilcox, Turbulence modeling for CFD, DCW Industries Inc., La Canada, California, 1998.[51] D.P.M. van Gils, G.W. Bruggert, D.P. Lathrop, C. Sun, D. Lohse, The Twente turbulent Taylor-Couette (T3C) facility:Strongly turbulent (multi-phase) flow between independently rotating cylinders, Rev. Sci. Instrum. 82(2011) 025105.[52] D.P.M. van Gils, Highly turbulent Taylor-Couette flow, University of Twente, Enschede, Netherlands, 2011(PhD thesis).[53] S.V. Patankar, Numerical heat transfer and fluid flow, Hemisphere Publishing Corporation, 1980.[54] F.R. Menter, Zonal two equation k-ω turbulence models for aerodynamic flows, AIAA Paper #93-2906, 24th Fluid Dynamics Conference, July, 1993.[55] F.R. Menter, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J. 32(1994) 1598-1605.[56] A. Tomiyama, I. Kataoka, I. ?un, T. Sakaguchi, Drag coefficients of single bubbles under normal and micro gravity conditions, JSME Int. J. 42(1998) 472-498.[57] D. Ma, G.J. Ahmadi, A thermodynamical formulation for dispersed turbulent flows-1:basic theory, Int. J. Multiphase Flow 16(1990) 323-340.[58] D.Z. Zhang,W.B. Vanderheyden, The effects of mesoscale structures on the disperse two-phase flows and their closures for dilute suspensions, Int. J. Multiphase Flow 28(2002) 805-822.[59] M.J. Burin, E. Schartman, H. Ji, Local measurements of turbulent angular momentum transport in circular Couette flow, Exp. Fluids 48(2010) 763-769. |
[1] | Xuejing He, Zhenlin Li, Ji Wang, Hai Yu. Effects of tube cross-sectional shapes on flow pattern, liquid film and heat transfer of n-pentane across tube bundles [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 16-25. |
[2] | Chaojie Li, Xianxin Fang, Meiling Sun, Jihai Duan, Weiwen Wang. Study on two-phase cloud dispersion from liquefied CO2 release [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 37-45. |
[3] | Lijuan Zhao, Zhe Tan, Xiaoguang Zhang, Qijun Zhang, Wei Wang, Qiang Deng, Jie Ma, De'an Pan. Research on process modeling and simulation of spent lead paste desulfurization enhanced reactor [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 293-303. |
[4] | Hae-Kyun Park, Dong-Hyuk Park, Bum-Jin Chung. Influence of the electrolyte conductivity on the critical current density and the breakdown voltage [J]. Chinese Journal of Chemical Engineering, 2023, 59(7): 169-175. |
[5] | Weikai Ren, Runsong Dai, Ningde Jin. Modeling of liquid film thickness around Taylor bubbles rising in vertical stagnant and co-current slug flowing liquids [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 179-194. |
[6] | Hongwei Liang, Wenling Li, Zisheng Feng, Jianming Chen, Guangwen Chu, Yang Xiang. Numerical simulation of gas-liquid flow in the bubble column using Wray-Agarwal turbulence model coupled with population balance model [J]. Chinese Journal of Chemical Engineering, 2023, 58(6): 205-223. |
[7] | Chengang Yang, Huaizhi Han, Quan Zhu, Xiangyuan Li. Cracking and buoyancy effect on hydrocarbon endothermic and heat transfer characteristics in rectangular mini-channel [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 242-254. |
[8] | Shuangfei Zhao, Yingying Nie, Wenyan Zhang, Runze Hu, Lianzhu Sheng, Wei He, Ning Zhu, Yuguang Li, Dong Ji, Kai Guo. Microfluidic field strategy for enhancement and scale up of liquid–liquid homogeneous chemical processes by optimization of 3D spiral baffle structure [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 255-265. |
[9] | Ming Chen, Huiyan Jiao, Jun Li, Zhibin Wang, Feng He, Yang Jin. Liquid–liquid two-phase flow in a wire-embedded concentric microchannel: Flow pattern and mass transfer performance [J]. Chinese Journal of Chemical Engineering, 2023, 56(4): 281-289. |
[10] | Qi Han, Xin-Yuan Zhang, Hai-Bo Wu, Xian-Tai Zhou, Hong-Bing Ji. Different efficiency toward the biomimetic aerobic oxidation of benzyl alcohol in microchannel and bubble column reactors: Hydrodynamic characteristics and gas–liquid mass transfer [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 84-92. |
[11] | Songsong Wang, Hong Li, Changyuan Tao, Renlong Liu, Yundong Wang, Zuohua Liu. Study on cavern evolution and performance of three mixers in agitation of yield-pseudoplastic fluids [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 111-122. |
[12] | Chunxin Fan, Zini Guo, Jianhong Luo. Study on an improved rotating microchannel separator in the intensification for demulsification and separation process [J]. Chinese Journal of Chemical Engineering, 2023, 55(3): 181-191. |
[13] | Chao Zhang, Youzhi Liu, Weizhou Jiao, Hongyan Shen, Xigang Yuan, Shengkun Jia. An optimization method for enhancement of gas–liquid mass transfer in a bubble column reactor based on the entropy generation extremum principle [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 83-88. |
[14] | Xibao Zhang, Zhenghong Luo. Bubble size modeling approach for the simulation of bubble columns [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 194-200. |
[15] | Tianpeng LiZhou, Jiajia Luo, Tiefeng Wang. Enhancement of acetylene and ethylene yields in partially decoupled oxidation of ethane by changing the composition of heat carrier [J]. Chinese Journal of Chemical Engineering, 2022, 47(7): 71-78. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||