Chinese Journal of Chemical Engineering ›› 2019, Vol. 27 ›› Issue (12): 3053-3059.DOI: 10.1016/j.cjche.2019.05.008
• Materials and Product Engineering • Previous Articles
Nianjun Kang, Dongbo Xu, Weidong Shi
Received:
2018-12-04
Revised:
2019-05-19
Online:
2020-03-17
Published:
2019-12-28
Contact:
Dongbo Xu, Weidong Shi
Supported by:
Nianjun Kang, Dongbo Xu, Weidong Shi
通讯作者:
Dongbo Xu, Weidong Shi
基金资助:
Nianjun Kang, Dongbo Xu, Weidong Shi. Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC)[J]. Chinese Journal of Chemical Engineering, 2019, 27(12): 3053-3059.
Nianjun Kang, Dongbo Xu, Weidong Shi. Synthesis plasmonic Bi/BiVO4 photocatalysts with enhanced photocatalytic activity for degradation of tetracycline (TC)[J]. 中国化学工程学报, 2019, 27(12): 3053-3059.
[1] W.J. Ong, L.K. Putri, L.L. Tan, S.P. Chai, S.T. Yong, Heterostructured AgX/g-C3N4(X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach:Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide, Appl. Catal. B Environ. 180(2016) 530-543. [2] C.J. Huang, C. Chen, M.W. Zhang, L.H. Lin, X.X. Ye, S. Lin, M. Antonietti, X.C. Wang, Carbon-doped BN nanosheets for metal-free photoredox catalysis, Nat. Commun. 6(2015) 7698. [3] X.P. Shen, Z.Y. Jiang, C.L. Gao, Z. Xu, Z.X. Xie, L.S. Zheng, One-step construction of ZnS/C and CdS/C one-dimensional core-shell nanostructures, J. Mater. Chem. A 17(2007) 1326-1330. [4] X.W. Li, W.D. Zhang, J.Y. Li, G.M. Jiang, Y. Zhou, S.C. Lee, F. Dong, Transformation pathway and toxic intermediates inhibition of photocatalytic NO removal on designed Bi metal@defective Bi2O2SiO3, Appl. Catal. B Environ. 241(2019) 187-195. [5] W.J. He, Y.J. Sun, G.M. Jiang, Y.H. Li, X.M. Zhang, Y.X. Zhang, Y. Zhou, F. Dong, Defective Bi4MoO9/Bi metal core/shell heterostructure:Enhanced visible light photocatalysis and reaction mechanism, Appl. Catal. B Environ. 239(2018) 619-627. [6] Z. Dai, F. Qin, H.P. Zhao, J. Ding, Y.L. Liu, R. Chen, Crystal defect engineering of aurivillius Bi2MoO6 by Ce doping for increased reactive species production in photocatalysis, ACS Catal. 6(2016) 3180-3192. [7] S. Bag, B. Behera, Structural, micro-structural and electrical properties of rare earth doped Bi4V2O11 ceramics, ECS J. Solid State S. C. 6(2017) N127-N136. [8] C.W. Kim, Y.S. Son, M.J. Kang, D.Y. Kim, Y.S. Kang, (040)-crystal facet engineering of BiVO4 plate photoanodes for solar fuel production, Adv. Energy Mater. 6(2016), 1501754. [9] Y.L. Min, K. Zhang, Y.C. Chen, Y.G. Zhang, Enhanced photocatalytic performance of Bi2WO6 by graphene supporter as charge transfer channel, Sep. Purif. Technol. 86(2012) 98-105. [10] R.P. Hu, X. Xiao, S.H. Tu, X.X. Zuo, J.M. Nan, Synthesis of flower-like heterostructured Bi2O3/Bi2O2CO3 microspheres using Bi2O2CO3 self-sacrifice precursor and its visiblelight-induced photocatalytic degradation of o-phenylphenol, Appl. Catal. B Environ. 163(2015) 510-519. [11] H. Zheng, Y. Yang, X. Liu, Z. Guo, C. Feng, Controllable synthesis of FeVO4@TiO2 nanostructures as anode for lithium ion battery, J. Nanopart. Res. 19(2017) 243. [12] C. Tan, S. Hsu, W.H. Ke, L. Chen, M.H. Huang, Facet-dependent electrical conductivity properties of Cu2O crystals, Nano Lett. 15(2015) 2155-2160. [13] L. Chen, J.X. Wang, D.W. Meng, X.L. Wu, Y.Q. Wang, E.Q. Zhong, The pH-controlled {040} facets orientation of BiVO4 photocatalysts with different morphologies for enhanced visible light photocatalytic performance, Mater. Lett. 162(2016) 150-153. [14] Q.Z. Wang, J.J. He, Y.B. Shi, S.L. Zhang, T.J. Niu, H.D. She, Y.P. Bi, Designing non-noble/semiconductor Bi/BiVO4 photoelectrode for the enhanced photoelectrochemical performance, Chem. Eng. J. 326(2017) 411-418. [15] H.Y. Li, Y.J. Sun, B. Cai, S.Y. Gan, D.X. Han, L. Niu, T.S. Wu, Hierarchically Z-scheme photocatalyst of Ag@AgCl decorated on BiVO4(040) with enhancing photoelectrochemical and photocatalytic performance, Appl. Catal. B Environ. 170(2015) 206-214. [16] Q.P. Lu, Y.F. Yu, Q.L. Ma, B. Chen, H. Zhang, 2D transition-metal-dichalcogenidenanosheet-based composites for photocatalytic and electrocatalytic hydrogen evolution reactions, Adv. Mater. 28(2016) 1917-1933. [17] W.D. Chemelewski, O. Mabayoje, C.B. Mullins, SILAR growth of Ag3VO4 and characterization for photoelectrochemical water oxidation, J. Phys. Chem. C 119(2015) 26803-26808. [18] W.G. Tu, Y. Zhou, Q. Liu, Z.P. Tian, J. Gao, X.Y. Chen, H.T. Zhang, J.G. Liu, Z.G. Zou, Robust hollow spheres consisting of alternating titania nanosheets and graphene nanosheets with high photocatalytic activity for CO2 conversion into renewable fuels, Adv. Funct. Mater. 22(2012) 1215-1221. [19] S. Nagamuthu, S. Vijayakumar, K.S. Ryu, Synthesis of Ag anchored Ag3VO4 stacked nanosheets:Toward a negative electrode material for high-performance asymmetric supercapacitor devices, J. Phys. Chem. C 120(2016) 18963-18970. [20] D.B. Xu, L.L. Li, T. Xia, W.Q. Fan, F.G. Wang, H.Y. Bai, W.D. Shi, Heterojunction composites of g-C3N4/KNbO3 enhanced photocatalytic properties for water splitting, Int. J. Hydrogen Energ. 43(2018) 16566-16572. [21] J.R. Li, W.D. Zhang, M.X. Ran, Y.J. Sun, H.W. Huang, F. Dong, Synergistic integration of Bi metal and phosphate defects on hexagonal and monoclinic BiPO4:Enhanced photocatalysis and reaction mechanism, Appl. Catal. B Environ. 243(2019) 313-321. [22] S.W. Zhang, J.X. Li, X.K. Wang, Y.S. Huang, M.Y. Zeng, J.Z. Xu, Rationally designed 1D Ag@AgVO3 nanowires/graphene/protonated g-C3N4 nanosheets heterojunctions for enhanced photocatalysis via electrostatic self-assembly and photochemical reduction methods, J. Mater. Chem. A 3(2015) 10119-10126. [23] J.B. Chen, H.N. Che, K. Huang, C.B. Liu, W.D. Shi, Fabrication of a ternary plasmonic photocatalyst CQDs/Ag/Ag2O to harness charge flow for photocatalytic elimination of pollutants, Appl. Catal. B Environ. 192(2016) 134-144. [24] L. Ma, K. Chen, F. Nan, J.H. Wang, D.J. Yang, L. Zhou, Q.Q. Wang, Improved hydrogen production of Au-Pt-CdS heteronanostructures by efficient plasmon-induced multipathway electron transfer, Adv. Funct. Mater. 26(2016) 6076-6083. [25] F. Mushtaq, A. Asani, M. Hoop, X.Z. Chen, D. Ahmed, B.J. Nelson, S. Pané, Highly efficient coaxial TiO2-PtPd tubular nanomachines for photocatalytic water purification with multiple locomotion strategies, Adv. Funct. Mater. 26(2016) 6995-7002. [26] D.B. Xu, W.D. Shi, C.J. Song, M. Chen, S.B. Yang, W.Q. Fan, B.Y. Chen, In-situ synthesis and enhanced photocatalytic activity of visible-light-driven plasmonic Ag/AgCl/NaTaO3 nanocubes photocatalysts, Appl. Catal. B Environ. 191(2016) 228-234. [27] D.J. Wang, H.D. Shen, L. Guo, C. Wang, F. Fu, Y.C. Liang, Ag/Bi2MoO6-x with enhanced visible-light-responsive photocatalytic activities via the synergistic effect of surface oxygen vacancies and surface plasmon, Appl. Surf. Sci. 436(2018) 536-547. [28] J. Di, J.X. Xia, M.X. Ji, B. Wang, S. Yin, Y. Huang, Z.G. Chen, H.M. Li, New insight of Ag quantum dots with the improved molecular oxygen activation ability for photocatalytic applications, Appl. Catal. B Environ. 188(2016) 376-387. [29] B.H. Wu, D.Y. Liu, S. Mubeen, T.T. Chuong, M. Moskovits, G.D. Stucky, Anisotropic growth of TiO2 onto gold nanorods for plasmon enhanced hydrogen production from water reduction, J. Am. Chem. Soc. 138(2016) 1114-1117. [30] G.P. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide, J. Am. Chem. Soc. 138(2016) 6292-6297. [31] K. Maeda, M. Higashi, D.L. Lu, R. Abe, K. Domen, Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst, J. Am. Chem. Soc. 132(2010) 5858-5868. [32] B.F. Luo, D.B. Xu, D. Li, G.L. Wu, M.M. Wu, W.D. Shi, M. Chen, Fabrication of an Ag/Bi3TaO7 plasmonic photocatalyst with enhanced photocatalytic activity for degradation of tetracycline, ACS Appl. Mater. Inter. 7(2015) 17061-17069. [33] Z.W. Zhao, W.D. Zhang, Y.J. Sun, J.Y. Yu, Y.X. Zhang, H. Wang, F. Dong, Z.B. Wu, Bi cocatalyst/Bi2MoO6 microspheres nanohybrid with SPR-promoted visible-light photocatalysis, J. Phys. Chem. C 120(2016) 11889-11898. [34] Y.J. Sun, Z.W. Zhao, W.D. Zhang, C.F. Gao, Y.X. Zhang, F. Dong, Plasmonic Bi metal as cocatalyst and photocatalyst:The case of Bi/(BiO)2CO3 and Bi particles, J. Colloid. Interf. Sci. 485(2017) 1-10. [35] S.X. Weng, B.B. Chen, L.Y. Xie, Z.Y. Zheng, P. Liu, Facile in situ synthesis of a Bi/BiOCl nanocomposite with high photocatalytic activity, J. Mater. Chem. A 1(2013) 3068-3075. [36] D.E. Wang, H.F. Jiang, X. Zong, Q. Xu, Y. Ma, G.L. Li, C. Li, Crystal facet dependence of water oxidation on BiVO4 sheets under visible light irradiation, Chem.-Eur. J. 17(2011) 1275-1282. [37] Y.J. Sun, Z.W. Zhao, F. Dong, W. Zhang, Mechanism of visible light photocatalytic NOx oxidation with plasmonic Bi cocatalyst-enhanced (BiO)2CO3 hierarchical microspheres, Phys. Chem. Chem. Phys. 17(2015) 10383-10390. [38] Y. Yu, C.Y. Cao, H. Liu, P. Li, F.F. Wei, Y. Jiang, W.G. Song, A Bi/BiOCl heterojunction photocatalyst with enhanced electron-hole separation and excellent visible light photodegrading activity, J. Mater. Chem. A 2(2014) 1677-1681. [39] S.S. Chu, C. Yang, C.G. Niu, Z.J. Li, J.D. Wang, X.T. Su, Synthesis of Bi-Bi2O3/C hybrid nanocomposite as a high performance photocatalyst, Mater. Lett. 136(2014) 366-370. [40] W.J. He, Y.J. Sun, G.M. Jiang, H.W. Huang, X.M. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling:Photocatalysis mechanism and reaction pathway, Appl. Catal. B Environ. 232(2018) 340-347. |
[1] | Qian Zhu, Yan Zhuang, Hongqing Zhao, Peng Zhan, Cong Ren, Changsheng Su, Wenqiang Ren, Jiawen Zhang, Di Cai, Peiyong Qin. 2,5-Diformylfuran production by photocatalytic selective oxidation of 5-hydroxymethylfurfural in water using MoS2/CdIn2S4 flower-like heterojunctions [J]. Chinese Journal of Chemical Engineering, 2023, 54(2): 180-191. |
[2] | Duanlian Tang, Xiaoyan Chen, Jiayan Yan, Zhuo Xiong, Xiaoyu Lou, Changshen Ye, Jie Chen, Ting Qiu. Facile one-pot synthesis of a BiOBr/Bi2WO6 heterojunction with enhanced visible-light photocatalytic activity for tetracycline degradation [J]. Chinese Journal of Chemical Engineering, 2023, 53(1): 222-231. |
[3] | Zeng Wei Heng, Woon Chan Chong, Yean Ling Pang, Lan Ching Sim, Chai Hoon Koo. Photocatalytic degradation of organic pollutants using green oil palm frond-derived carbon quantum dots/titanium dioxide as multifunctional photocatalysts under visible light radiation [J]. Chinese Journal of Chemical Engineering, 2022, 51(11): 21-34. |
[4] | Fenghongkang Pan, Yimeng Wang, Kaiqing Zhao, Jun Hu, Honglai Liu, Ying Hu. Photocatalytic degradation of tetracycline hydrochloride with visible light-responsive bismuth tungstate/conjugated microporous polymer [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 488-496. |
[5] | Hongbing Song, Lei Liu, Bingxiao Feng, Haozhong Wang, Meng Xiao, Hengjun Gai, Yubao Tang, Xiaofei Qu, Tingting Huang. Modified g-C3N4 derived from ionic liquid and urea for promoting visible-light photodegradation of organic pollutants [J]. Chinese Journal of Chemical Engineering, 2021, 40(12): 293-303. |
[6] | Dai Shi, He Yang, Xiangxin Xue. Preparation, characterization and antibacterial properties of cobalt doped titania nanomaterials [J]. Chinese Journal of Chemical Engineering, 2020, 28(5): 1474-1482. |
[7] | K. V. Divya Lakshmi, T. Siva Rao, J. Swathi Padmaja, I. Manga Raju, M. Ravi Kumar. Structure, photocatalytic and antibacterial activity study of Meso porous Ni and S co-doped TiO2 nano material under visible light irradiation [J]. Chinese Journal of Chemical Engineering, 2019, 27(7): 1630-1641. |
[8] | Yilin Zhao, Yaoqiang Wang, Gang Xiao, Haijia Su. Fabrication of biomaterial/TiO2 composite photocatalysts for the selective removal of trace environmental pollutants [J]. Chinese Journal of Chemical Engineering, 2019, 27(6): 1416-1428. |
[9] | Jianling Meng, Yongdan Li. A high H2 evolution rate under visible light of a CdS/TiO2@NiS catalyst due to a directional electron transfer between the phases [J]. Chinese Journal of Chemical Engineering, 2019, 27(3): 544-548. |
[10] | Yandong Liu, Shijian Zhou, Fu Yang, Hua Qin, Yan Kong. Degradation of phenol in industrial wastewater over the F-Fe/TiO2 photocatalysts under visible light illumination [J]. , 2016, 24(12): 1712-1718. |
[11] | CHU Jinyu, ZHONG Lei. Photocatalytic Degradation of Methylene Blue with Side-glowing Optical Fiber Deliverying Visible Light [J]. Chin.J.Chem.Eng., 2012, 20(5): 895-899. |
[12] | YU Huang, ZHENG Xuxu, YIN Zhongyi, TAO Feng, FANG Beibei, HOU Keshan. Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light [J]. , 2007, 15(6): 802-807. |
[13] |
CHENGYouping,SUNHongqi,JINWanqin,XUNanping.
Effect of preparation conditions on visible photocatalytic activity of titania synthesized by solution combustion method [J]. , 2007, 15(2): 178-183. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||||||
Full text 177
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||
Abstract 261
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||