Chinese Journal of Chemical Engineering ›› 2021, Vol. 29 ›› Issue (2): 136-145.DOI: 10.1016/j.cjche.2020.12.011
Previous Articles Next Articles
Han Zhang1, Yunpeng Bai1, Ning Zhu2, Jianhe Xu1
Received:
2020-10-18
Revised:
2020-12-03
Online:
2021-05-15
Published:
2021-02-28
Contact:
Jianhe Xu
Han Zhang1, Yunpeng Bai1, Ning Zhu2, Jianhe Xu1
通讯作者:
Jianhe Xu
Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 136-145.
Han Zhang, Yunpeng Bai, Ning Zhu, Jianhe Xu. Microfluidic reactor with immobilized enzyme-from construction to applications: A review[J]. 中国化学工程学报, 2021, 29(2): 136-145.
[1] L. Tamborini, P. Fernandes, F. Paradisi, F. Molinari, Flow bioreactors as complementary tools for biocatalytic process intensification, Trends Biotechnol. 36 (2018) 73–88. [2] A. De Simone, M. Naldi, M. Bartolini, L. Davani, V. Andrisano, Immobilized enzyme reactors: an overview of applications in drug discovery from 2008 to 2018,Chromatographia.82(2019)425-441. [3] Z.Y. Wu, H. Zhang, F. Li, F.Q. Yang, Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis-based immobilized enzyme microreactor, Electrophoresis 41 (2020) 1326–1332. [4] J. Britton, S. Majumdar, G.A. Weiss, Continuous flow biocatalysis, Chem. Soc. Rev. 47 (2018) 5891–5918. [5] M. Gojun, L. Pustahija, A.J. Tusek, A. Salic, D. Valinger, B. Zelic, Kinetic parameter estimation and mathematical modelling of lipase catalysed biodiesel synthesis in a microreactor, Micromachines 10 (2019) 11. [6] D.T. Chiu, A.J. deMello, D. Di Carlo, P.S. Doyle, C. Hansen, R.M. Maceiczyk, R.C. R. Wootton, Small but perfectly formed? Successes, challenges, and opportunities for microfluidics in the chemical and biological sciences, Chem. 2 (2017) 201–223. [7] K.S. Elvira, X.C.I. Solvas, R.C.R. Wootton, A.J. deMello, The past, present and potential for microfluidic reactor technology in chemical synthesis, Nat. Chem. 5 (2013) 905–915. [8] A. Salic, B. Zelic, Synergy of microtechnology and biotechnology: microreactors as an effective tool for biotransformation processes, Food Technol. Biotechnol. 56 (2018) 464–479. [9] P. Gruber, M.P.C. Marques, B. O’Sullivan, F. Baganz, R. Wohlgemuth, N. Szita, Conscious coupling: The challenges and opportunities of cascading enzymatic microreactors, Biotechnol. J. 12 (2017) 1700030. [10] M.P. Thompson, I. Penafiel, S.C. Cosgrove, N.J. Turner, Biocatalysis using immobilized enzymes in continuous flow for the synthesis of fine chemicals, Org. Process Res. Dev. 23 (2019) 9–18. [11] J.P. Adams, M.J.B. Brown, A. Diaz-Rodriguez, R.C. Lloyd, G.D. Roiban, Biocatalysis: A pharma perspective, Adv. Synth. Catal. 361 (2019) 2421–2432. [12] A. Giannakopoulou, E. Gkantzou, A. Polydera, H. Stamatis, Multienzymatic nanoassemblies: recent progress and applications, Trends Biotechnol. 38 (2020) 202–216. [13] X. Liu, X.D. Zhu, M.A. Camara, Q.S. Qu, Y.C. Shan, L. Yang, Surface modification with highly-homogeneous porous silica layer for enzyme immobilization in capillary enzyme microreactors, Talanta 197 (2019) 539–547. [14] L.R. Bogdanova, A.M. Rogov, O.S. Zueva, Y.F. Zuev, Lipase enzymatic microreactor in polysaccharide hydrogel: structure and properties, Russ. Chem. Bull. 68 (2019) 400–404. [15] C. Nagy, A. Kecskemeti, A. Gaspar, Fabrication of immobilized enzyme reactors with pillar arrays into polydimethylsiloxane microchip, Anal. Chim. Acta. 1108 (2020) 70–78. [16] Z.J. Jin, G.T. Ding, G.X. Yan, G.Y. Li, W. Zhang, L.X. Yang, W.H. Li, Rapid detection of antibiotic resistance genes in lactic acid bacteria using PMMA-based microreactor arrays, Appl. Microbiol. Biotechnol. 104 (2020) 6375–6383. [17] T. Burgahn, P. Pietrek, R. Dittmeyer, K.S. Rabe, C.M. Niemeyer, Evaluation of a microreactor for flow biocatalysis by combined theory and experiment, ChemCatChem 12 (2020) 2452–2460. [18] T. Ikawa, S. Masuda, S. Akai, Microflow fluorinations of benzynes: efficient synthesis of fluoroaromatic compounds, Chem. Pharm. Bull. 66 (2018) 1153–1164. [19] K. Marcisz, K. Kaniewska, M. Mackiewicz, A. Nowinska, J. Romanski, Z. Stojek, M. Karbarz, Electroactive, mediating and thermosensitive microgel useful for covalent entrapment of enzymes and formation of sensing layer in biosensors, Electroanalysis 30 (2018) 2853–2860. [20] X.T. Hu, J.Q. Yang, C.J. Chen, H. Khan, Y.N. Guo, L. Yang, Capillary electrophoresis-integrated immobilized enzyme microreactor utilizing single-step in-situ penicillinase-mediated alginate hydrogelation: Application for enzyme assays of penicillinase, Talanta 189 (2018) 377–382. [21] S.J. He, J. Zhang, Y. Dong, X.Y. Duan, F.T. Yang, T. Luo, Z. Wang, Y.M. Dong, Establishment and development of a CZE-UV method for rapid measurement of aprotinin potency, Electrophoresis 41 (2019) 168–174. [22] C. Zhong, Z.X. Lei, H. Huang, M.Y. Zhang, Z.W. Cai, Z.A. Lin, One-pot synthesis of trypsin-based magnetic metal-organic frameworks for highly efficient proteolysis, J. Mat. Chem. B. 8 (2020) 4642–4647. [23] S. Moore, S. Hess, J. Jorgenson, Characterization of an immobilized enzyme reactor for on-line protein digestion, J. Chromatogr. A. 1476 (2016) 1–8. [24] K. Meller, M. Szumski, B. Buszewski, Microfluidic reactors with immobilized enzymes-characterization, dividing, perspectives, Sens. Actuator B-Chem. 244 (2017) 84–106. [25] N. Sugai, Y. Morita, T. Komatsu, Nonbubble-propelled biodegradable microtube motors consisting only of protein, Chem.-Asian J. 14 (2019) 2953–2957. [26] Bras, Eduardo J S; Domingues, Cristiana; Chu, Virginia; Fernandes, Pedro; Conde, Joao Pedro, Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors-Multi-step reactions and upscaling, J. Biotechnol. 323 (2020) 24–32. [27] H.H. Shi, K.X. Nie, B. Dong, M.Q. Long, H. Xu, Z.C. Liu, Recent progress of microfluidic reactors for biomedical applications, Chem. Eng. J. 361 (2019) 635–650. [28] H.H. Zhao, Y.Q. Liu, J. Chen, Screening of alpha-glucosidase inhibitors from natural flavonoids by an in-capillary assay combining PMMA and EMMA, Anal. Methods 11 (2019) 1371–1378. [29] J.M. Bolivar, M.A. Tribulato, Z. Petrasek, B. Nidetzky, Let the substrate flow, not the enzyme: practical immobilization of D-Amino acid oxidase in a glass microreactor for effective biocatalytic conversions, Biotechnol. Bioeng. 113 (2016) 2342–2349. [30] J.C. Wang, S.Q. Bai, Y.J. Wang, G.S. Luo, T. Wang, Preparation of large In(OH)(3) and In2O3 particles through a seed-mediated growth method in a microreactor, Particuology 49 (2020) 1–8. [31] Y.Song,S.E.Liu,B.Y.Wang,M.J.Shang,L.L.Lin,Y.H.Su,Continuousandcontrollable preparation of polyaniline with different reaction media in microreactors for supercapacitor applications, Chem. Eng. Sci. 207 (2019) 820–828. [32] T. Rob, P. Liuni, P.K. Gill, S.L. Zhu, N. Balachandran, P.J. Berti, D.J. Wilson, Measuring dynamics in weakly structured regions of proteins using microfluidics-enabled subsecond H/D exchange mass spectrometry, Anal. Chem. 84 (2012) 3771–3779. [33] A.I. Neto, P.A. Levkin, J.F. Mano, Patterned superhydrophobic surfaces to process and characterize biomaterials and 3D cell culture, Mater. Horizons. 28 (2020) 1841–1846. [34] P. Gruber, F. Carvalho, M.P.C. Marques, B. O’Sullivan, F. Subrizi, D. Dobrijevic, J. Ward, H.C. Hailes, P. Fernandes, R. Wohlgemuth, F. Baganz, N. Szita, Enzymatic synthesis of chiral amino-alcohols by coupling transketolase and transaminase-catalyzed reactions in a cascading continuous-flow microreactor system, Biotechnol. Bioeng. 115 (2018) 586–596. [35] A.J. Tusek, M. Tisma, V. Bregovic, A. Pticar, Z. Kurtanjek, B. Zelic, Enhancement of phenolic compounds oxidation using laccase from Trametes versicolor in a microreactor, Biotechnol. Bioprocess Eng. 18 (2013) 689–696. [36] X.J. Li, Z.R. Yin, X.J. Cui, L. Yang, Capillary electrophoresis-integrated immobilized enzyme microreactor with graphene oxide as support: Immobilization of negatively charged L-lactate dehydrogenase via hydrophobic interactions, Electrophoresis 41 (2019) 175–182. [37] W.N. Min, W.P. Wang, J.R. Chen, A.J. Wang, Z.D. Hu, On-line immobilized acetylcholinesterase microreactor for screening of inhibitors from natural extracts bycapillary electrophoresis, Anal. Bioanal. Chem.404(2012) 2397–2405. [38] P. He, G. Greenway, S.J. Haswell, Development of enzyme immobilized monolith micro-reactors integrated with microfluidic electrochemical cell for the evaluation of enzyme kinetics, Microfluid. Nanofluid. 8 (2010) 565–573. [39] Y.X. Tang, W. Li, Y.Y. Wang, Y.F. Zhang, Y.B. Ji, Rapid on-line system for preliminary screening of lipase inhibitors from natural products by integrating capillary electrophoresis with immobilized enzyme microreactor, J. Sep. Sci. 43 (2020) 1003–1010. [40] Y.C. Bi, H. Zhou, H.H. Jia, P. Wei, Polydopamine-mediated preparation of an enzyme-immobilized microreactor for the rapid production of wax ester, RSC Adv. 7 (2017) 12283–12291. [41] D.S. Peterson, T. Rohr, F. Svec, J.M.J. Frèchet, Enzymatic Microreactor-on-achip: protein mapping using trypsin immobilized on porous polymer monoliths molded in channels of microfluidic devices, Anal. Chem. 74 (2002) 4081–4088. [42] H.Y. Zhao, Z.L. Chen, Screening of aromatase inhibitors in traditional chinese medicines by electrophoretically mediated microanalysis in a partially filled capillary, J. Sep. Sci. 36 (2013) 2691–2697. [43] M.P. Zarabadi, M. Couture, S.J. Charette, J. Greener, A generalized kinetic framework applied to whole-cell bioelectrocatalysis in bioflow reactors clarifies performance enhancements for geobacter sulfurreducens biofilms, ChemElectroChem. 6 (2019) 2715–2718. [44] Z.Y. Wu, H. Zhang, Q.Q. Li, F.Q. Yang, D.Q. Li, Capillary electrophoresis-based online immobilized enzyme reactor for beta-glucosidase kinetics assays and inhibitors screening, J. Chromatogr. B. 1110 (2019) 67–73. [45] N. Lu, D. Sticker, A. Kretschmann, N.J. Petersen, J.P. Kutter, A thiol-ene microfluidic device enabling continuous enzymatic digestion and electrophoretic separation as front-end to mass spectrometric peptide analysis, Anal. Bioanal. Chem. 412 (2020) 3559–3571. [46] T.C. Logan, D.S. Clark, T.B. Stachowiak, F. Svec, J.M.J. Frechet, Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions, Anal. Chem. 79 (2007) 6592–6598. [47] M.Q. Li, H. Shen, Z.X. Zhou, W.T. He, Controllable and high-performance immobilized enzyme reactor: DNA-directed immobilization of multienzyme in polyamidoamine dendrimer-functionalized capillaries, Electrophoresis 41 (2020) 335–344. [48] H.C. Schroder, F. Natalio, I. Shukoor, W. Tremel, U. Schlossmacher, X.H. Wang, W.E.G. Muller, Apposition of silica lamellae during growth of spicules in the demosponge suberites domuncula: Biological/biochemical studies and chemical/biomimetical confirmation, J. Struct. Biol. 159 (2007) 325–334. [49] J.G. Rivera, P.B. Messersmith, Polydopamine-assisted immobilization of trypsin onto monolithic structures for protein digestion, J. Sep. Sci. 35 (2012) 1514–1520. [50] M.X. Cheng, R. Wang, B.F. Zhang, Z.K. Mao, Z.L. Chen, Rapid proteolytic digestion and peptide separation using monolithic enzyme microreactor coupled with capillary electrophoresis, J. Pharm. Biomed. Anal. 165 (2019) 129–134. [51] H. Lin, C.F. Zhang, Y.J. Lin, Y.Q. Chang, J. Crommen, Q.Q. Wang, Z.J. Jiang, J.L. Guo, A strategy for screening trypsin inhibitors from traditional Chinese medicine based on a monolithic capillary immobilized enzyme reactor coupled with offline liquid chromatography and mass, J. Sep. Sci. 42 (2019) 1980–1989. [52] Z.D. Knezevic-Jugovic, Z. Mg, S.M. Jakovetic, A.B. Stefanovic, E.S. Dzunuzovic, An approach for the improved immobilization of penicillin G acylase onto macroporous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) as a potential industrial biocatalyst, Biotechnol. Prog. 32 (2016) 43–53. [53] M. Xiong, B. Gu, J.D. Zhang, J.J. Xu, H.Y. Chen, H. Zhong, Glucose microfluidic biosensors based on reversible enzyme immobilization on photopatterned stimuli-responsive polymer, Biosens. Bioelectron. 50 (2013) 229–234. [54] E.C.A. Stigter, G.J. de Jong, W.P. van Bennekom, Pepsin immobilized in dextran-modified fused-silica capillaries for on-line protein digestion and peptide mapping, Anal. Chim. Acta 629 (2008) 231–238. [55] M.S. Thomsen, B. Nidetzky, Coated-wall microreactor for continuous biocatalytic transformations using immobilized enzymes, Biotechnol. J. 4 (2009) 98–107. [56] K. Meller, P. Pomastowski, D. Grzywinski, M. Szumski, B. Buszewski, Preparation and evaluation of dual-enzyme microreactor with coimmobilized trypsin and chymotrypsin, J. Chromatogr. A 1440 (2016) 45–54. [57] L. Lloret, G. Eibes, M.T. Moreira, G. Feijoo, J.M. Lema, M. Miyazaki, Improving the catalytic performance of laccase using a novel continuous-flow microreactor, Chem. Eng. J. 223 (2013) 497–506. [58] Y. Liu, H.X. Wang, Q.P. Liu, H.Y. Qu, B.H. Liu, P.Y. Yang, Improvement of proteolytic efficiency towards low-level proteins by an antifouling surface of alumina gel in a microchannel, Lab Chip. 10 (2010) 2887–2893. [59] J.C. Pastre, D.L. Browne, S.V. Ley, Flow chemistry syntheses of natural products, Chem. Soc. Rev. 42 (2013) 8849–8869. [60] L. Syga, D. Spakman, C.M. Punter, B. Poolman, Method for immobilization of living and synthetic cells for high-resolution imaging and single-particle tracking, Sci. Rep. 8 (2018) 13789. [61] D. Valikhani, J.M. Bolivar, M. Viefhues, D.N. McIlroy, E.X. Vrouwe, B. Nidetzky, A Spring in performance: silica nanosprings boost enzyme immobilization in microfluidic channels, ACS Appl. Mater. Interfaces 9 (2017) 34641–34649. [62] R.C. Rodrigues, J.J. Virgen-Ortiz, J.C.S. dos Santo, A. Berenguer-Murcia, A.R. Alcantara, O. Barbosa, C. Ortiz, R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions, Biotechnol. Adv. 37 (2019) 756–770. [63] M. Bilal, H.M.N. Iqbal, Naturally-derived biopolymers: Potential platforms for enzyme immobilization, Int. J. Biol. Macromol. 130 (2019) 462–482. [64] M. Bilal, Y.P. Zhao, T. Rasheed, H.M.N. Iqbal, Magnetic nanoparticles as versatile carriers for enzymes immobilization: A review, Int. J. Biol. Macromol. 120 (2018) 2530–2544. [65] S.Z. Ren, C.H. Li, X.B. Jiao, S.R. Jia, Y.J. Jiang, M. Bilal, J.D. Cui, Recent progress in multienzymes co-immobilization and multienzyme system applications, Chem. Eng. J. 373 (2019) 1254–1278. [66] E. Gkantzou, M. Patila, H. Stamatis, Magnetic microreactors with immobilized enzymes-from assemblage to contemporary applications, Catalysts 8 (2018) 7. [67] N. Mangkorn, P. Kanokratana, N. Roongsawang, A. Laobuthee, N. Laosiripojana, V. Champreda, Synthesis and characterization of Ogataea thermomethanolica alcohol oxidase immobilized on barium ferrite magnetic microparticles, J. Biosci. Bioeng. 127 (2019) 265–272. [68] S. Asmat, A.H. Anwer, Q. Husain, Immobilization of lipase onto novel constructed polydopamine grafted multiwalled carbon nanotube impregnated with magnetic cobalt and its application in synthesis of fruit flavours, Int. J. Biol. Macromol. 140 (2019) 484–495. [69] J. He, S.S. Sun, Z. Zhou, Q.P. Yuan, Y.H. Liu, H. Liang, Thermostable enzymeimmobilized magnetic responsive Ni-based metal-organic framework nanorods as recyclable biocatalysts for efficient biosynthesis of Sadenosylmethionine, Dalton Trans. 48 (2019) 2077–2085. [70] J. Bataille, A. Viode, I. Pereiro, J.P. Lafleur, F. Varenne, S. Descroix, F. Becher, J.P. Kutter, C. Roesch, C. Pous, M. Taverna, A. Pallandre, C. Smadja, I. Le Potier, Ona-chip tryptic digestion of transthyretin: a step toward an integrated microfluidic system for the follow-up of familial transthyretin amyloidosis, Analyst. 143 (2018) 1077–1086. [71] P. Ramana, J. Schejbal, K. Houthoofd, J. Martens, E. Adams, P. Augustijns, Z. Glatz, A. Van Schepdael, An improved design to capture magnetic microparticles for capillary electrophoresis based immobilized microenzyme reactors, Electrophoresis 39 (2018) 981–988. [72] H. Shen, J.Y. Song, Z.X. Zhou, M.Q. Li, R.Q. Zhang, P. Su, Y. Yang, DNA-Directed immobilized enzymes on recoverable magnetic nanoparticles shielded in nucleotide coordinated polymers, Ind. Eng. Chem. Res. 58 (2019) 8585–8596. [73] H. Shen, J.Y. Song, Y. Yang, P. Su, Y. Yang, DNA-directed enzyme immobilization on Fe3O4 modified with nitrogen-doped graphene quantum dots as a highly efficient and stable multi-catalyst system, J. Mater. Sci. 54 (2019) 2535–2551. [74] A.M. Carvalho, C.V. Montes, R.J. Schneider, A. Madder, An anticaffeine antibody-oligonucleotide conjugate for DNA-directed immobilization in Environmental immunoarrays, Langmuir 34 (2018) 14834–14841. [75] N. Wu, S.M. Wang, Y. Yang, J.Y. Song, P. Su, Y. Yang, DNA-directed trypsin immobilization on a polyamidoamine dendrimer-modified capillary to form a renewable immobilized enzyme microreactor, Int. J. Biol. Macromol. 113 (2018) 38–44. [76] T. Vong, S. Schoffelen, S.F.M. van Dongen, H. Zuilhof, A DNA-based strategy for dynamic positional enzyme immobilization inside fused silica microchannels, Chem. Sci. 2 (2011) 1278–1285. [77] M. Mogharabi-Manzari, M. Heydari, S. Sadeghian-Abadi, M. Yousefi-Mokri, M. A. Faramarzi, Enzymatic dimerization of phenylacetylene by laccase immobilized on magnetic nanoparticles via click chemistry, Biocatal. Biotransform. 37 (2019) 455–465. [78] Z.Q. Wang, J.L. Lv, Z.L. An, M. Kimura, T. Ono, Enzyme immobilization in completely packaged freestanding SU-8 microfluidic channel by electro click chemistry for compact thermal biosensor, Process Biochem. 79 (2019) 57–64. [79] B. Celebi, A. Bayraktar, A. Tuncel, Synthesis of a monolithic, microimmobilised enzyme reactor via click-chemistry, Anal. Bioanal. Chem. 403 (2012) 2655–2663. [80] S. Guerrero, D. Cadano, L. Agui, R. Barderas, S. Campuzano, P. Yanez-Sedeno, J. M. Pingarron, Click chemistry-assisted antibodies immobilization for immunosensing of CXCL7 chemokine in serum, J. Electroanal. Chem. 837 (2019) 246–253. [81] A.R. Grimm, D.F. Sauer, T.M. Garakani, K. Rubsam, T. Polen, M.D. Davari, F. Jakob, J. Schiffels, J. Okuda, U. Schwaneberg, Anchor peptide-mediated surface immobilization of a grubbs-hoveyda-type catalyst for ring-opening metathesis polymerization, Bioconjugate Chem. 30 (2019) 714–720. [82] L. Zhang, N. Vila, A. Walcarius, M. Etienne, Molecular and biological catalysts coimmobilization on electrode by combining diazonium electrografting and sequential click chemistry, ChemElectroChem. 5 (2018) 2208–2217. [83] P.R. Fan, X. Zhao, Z.H. Wei, Y.P. Huang, Z.S. Liu, Robust immobilized enzyme reactor based on trimethylolpropane trimethacrylate organic monolithic matrix through “thiol-ene” click reaction, Eur. Polym. J. 124 (2020) 109456. [84] Z.H. Wei, P.R. Fan, Y.J. Jiao, Y. Wang, Y.P. Huang, Z.S. Liu, Integrated microfluidic chip for on-line proteome analysis with combination of denaturing and rapid digestion of protein, Anal. Chim. Acta. 1102 (2020) 1–10. [85] J. Lin, Y.J. Liu, S. Chen, X.Y. Le, X.H. Zhou, Z.Y. Zhao, Y.Y. Ou, J.H. Yang, Reversible immobilization of laccase onto metal-ion-chelated magnetic microspheres for bisphenol A removal, Int. J. Biol. Macromol. 84 (2016) 189–199. [86] J.F. Ma, C.Y. Hou, Y. Liang, T.T. Wang, Z. Liang, L.H. Zhang, Y.K. Zhang, Efficient proteolysis using a regenerable metal-ion chelate immobilized enzyme reactor supported on organic-inorganic hybrid silica monolith, Proteomics 11 (2011) 991–995. [87] Y. Li, B. Yan, X.Q. Xu, C.H. Deng, P.Y. Yang, X.Z. Shen, X.M. Zhang, On-column tryptic mapping of proteins using metal-ion-chelated magnetic silica microspheres by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, Rapid Commun. Mass Spectrom. 21 (2007) 2263–2268. [88] J.W. Di, C.P. Shen, S.H. Peng, Y.F. Tu, S.J. Li, A one-step method to construct a third-generation biosensor based on horseradish peroxidase and gold nanoparticles embedded in silica sol-gel network on gold modified electrode, Anal. Chim. Acta. 553 (2005) 196–200. [89] W. Liang, F. Carraro, M.B. Solomon, S.G. Bell, H. Amenitsch, C.J. Sumby, N.G. White, P. Falcaro, C.J. Doonan, Enzyme encapsulation in a porous hydrogenbonded organic framework, J. Am. Chem. Soc. 141 (2019) 14298–14305. [90] D.J. Bell, M. Wiese, A.A. Schonberger, M. Wessling, Catalytically active hollow fiber membranes with enzyme-embedded metal-organic framework coating, Angew. Chem.-Int. Edit. 59 (2020) 16047–16053. [91] K.V. Plakas, A. Mantza, S.D. Sklari, V.T. Zaspalis, A.J. Karabelas, Heterogeneous fenton-like oxidation of pharmaceutical diclofenac by a catalytic iron-oxide ceramic microfiltration membrane, Chem. Eng. J. 373 (2019) 700–708. [92] K. Sakai-Kato, M. Kato, T. Toyo’oka, On-line drug-metabolism system using microsomes encapsulated in a capillary by the sol-gel method and integrated into capillary electrophoresis, Anal. Biochem. 308 (2002) 278–284. [93] E. Jang, K.J. Son, B. Kim, W.G. Koh, Phenol biosensor based on hydrogel microarrays entrapping tyrosinase and quantum dots, Analyst. 135 (2010) 2871–2878. [94] Q.Q. Qi, B. Yang, H.H. Li, J.J. Bao, H.Y. Li, B.B. Wang, Q. Mei, Platelet microparticles regulate neutrophil extracellular traps in acute pancreatitis, Pancreas 49 (2020) 1099–1103. [95] E.V. Capela, A.I. Valente, J.C.F. Nunes, F.F. Magalhaes, O. Rodriguez, A. Soto, Insights on the laccase extraction and activity in ionic-liquid-based aqueous biphasic systems, Sep. Purif. Technol. 248 (2020). [96] J. Wang, S.S. Wang, Z.J. Li, S.S. Gu, X.Y. Wu, F. Wu, Ultrasound irradiation accelerates the lipase-catalyzed synthesis of methyl caffeate in an ionic liquid, J. Mol. Catal. B-Enzym. 111 (2015) 21–28. [97] A. Gong, D. Zhu, Y.Y. Mei, X.H. Xu, F.A. Wu, J. Wang, Enhanced biocatalysis mechanism under microwave irradiation in isoquercitrin production revealed by circular dichroism and surface plasmon resonance spectroscopy, Bioresour. Technol. 205 (2016) 48–57. [98] B.U. Moon, S. Koster, K.J.C. Wientjes, R.M. Kwapiszewski, A.J.M. Schoonen, B.H. C. Westerink, E. Verpoorte, An enzymatic microreactor based on chaotic micromixing for enhanced amperometric detection in a continuous glucose monitoring application, Anal. Chem. 82 (2010) 6756–6763. [99] Y.K. Suh, S. Kang, A review on mixing in microfluidics, Micromachines 1 (2010) 82–111. [100] V. Hessel, H. Lowe, F. Schonfeld, Micromixers-a review on passive and active mixing principles, Chem. Eng. Sci. 60 (2005) 2479–2501. [101] Z.Z. Wen, X.H. Yu, S.T. Tu, J.Y. Yan, E. Dahlquist, Intensification of biodiesel synthesis using zigzag micro-channel reactors, Bioresour. Technol. 100 (2009) 3054–3060. [102] P. Madadkar, P.R. Selvaganapathy, R. Ghosh, Continuous flow microreactor for protein PEGylation, Biomicrofluidics 12 (2018) 4. [103] C.T. Zhu, A. Gong, F. Zhang, Y. Xu, S. Sheng, F.A. Wu, J. Wang, Enzyme immobilized on the surface geometry pattern of groove-typed microchannel reactor enhances continuous flow catalysis, J. Chem. Technol. Biotechnol. 94 (2019) 2569–2579. [104] A.T. Pedersen, G. Rehn, J.M. Woodley, Oxygen transfer rates and requirements in oxidative biocatalysis, Comput. Aided Chem. Eng. 37 (2015) 2111–2116. [105] J.M. Bolivar, A. Mannsberger, M.S. Thomsen, G. Tekautz, B. Nidetzky, Process intensification for O-2-dependent enzymatic transformations in continuous single-phase pressurized flow, Biotechnol. Bioeng. 116 (2019) 503–514. [106] L. Vobecka, L. Ticha, A. Atanasova, Z. Slouka, P. Hasal, M. Pribyl, Enzyme synthesis of cephalexin in continuous-flow microfluidic device in ATPS environment, Chem. Eng. J. 396 (2020) 125236. [107] R.H. Ringborg, A. Toftgaard Pedersen, J.M. Woodley, Automated determination of oxygen-dependent enzyme kinetics in a tube-in-tube flow reactor, ChemCatChem 9 (2017) 3285–3288. [108] M.L. Yang, K. Loubiere, N. Dietrich, C. Le Men, C. Gourdon, G. Hebrard, Local investigations onthe gas-liquid mass transfer aroundTaylor bubbles flowingin a meandering millimetric square channel, Chem. Eng. Sci. 165 (2017) 192–203. [109] M. Nemeth, F. Ender, A. Poppe, Heat and mass transfer reduced order modeling approach of droplet microreactor based Lab-on-a-Chip devices, Microelectron. J. 46 (2015) 1152–1161. [110] G. Laudadio, F. Tieves, E. Fernandez-Fueyo, T. Noel, I.W.C.E. Arends, F. Hollmann, Biocatalytic synthesis of the green note trans-2-hexenal in a continuous-flow microreactor, Beilstein J. Org. Chem. 14 (2018) 697–703. [111] W.L. Xie, M.Y. Huang, Fabrication of immobilized Candida rugosa lipase on magnetic Fe3O4-poly(glycidyl methacrylate-co-methacrylic acid) composite as an efficient and recyclable biocatalyst for enzymatic production of biodiesel, Renew. Energy 158 (2020) 474–486. [112] S. Schroter, K. Schnitzlein, Enzymatic hydrolysis of rapeseed oil by thermomyces lanuginosus lipase: variation of continuous and dispersed phase in a slug flow reactor, Appl. Microbiol. Biotechnol. 102 (2018) 4799–4806. [113] A. Hommes, T. de Wit, G.J.W. Euverink, J. Yue, Enzymatic biodiesel synthesis by the biphasic esterification of oleic acid and 1-butanol in microreactors, Ind. Eng. Chem. Res. 58 (2019) 15432–15444. [114] B. Tomaszewski, A. Schmid, K. Buehler, Biocatalytic production of catechols using a high pressure tube-in-tube segmented flow microreactor, Org. Process Res. Dev. 18 (2014) 1516–1526. [115] X.J. Zhou, C.T. Zhu, Y. Hu, S. You, F.A. Wu, J. Wang, A novel microfluidic aqueous two-phase system with immobilized enzyme enhances cyanidin-3- O-glucoside content in red pigments from mulberry fruits, Biochem. Eng. J. 158 (2020) 107556. [116] Y.Y. Zhang, J.H. Liu, Purification and in situ immobilization of lipase from of a mutant of Trichosporon laibacchii using aqueous two-phase systems, J. Chromatogr. B. 878 (2010) 909–912. |
[1] | Siyuan Gao, Yuanke Guo, Chen Ma, Ding Ma, Kequan Chen, Pingkai Ouyang, Xin Wang. Characterization and application of a recombinant dopa decarboxylase from Harmonia axyridis for the efficient biosynthesis of dopamine [J]. Chinese Journal of Chemical Engineering, 2022, 41(1): 449-456. |
[2] | Saboura Ashkevarian, Jalil Badraghi, Fatemeh Mamashli, Behdad Delavari, Ali Akbar Saboury. Covalent immobilization and characterization of Rhizopus oryzae lipase on core-shell cobalt ferrite nanoparticles for biodiesel production [J]. Chinese Journal of Chemical Engineering, 2021, 37(9): 128-136. |
[3] | Xueping Liu, Ping Xue, Feng Jia, Dongya Qiu, Keren Shi, Weiwei Zhang. Tailoring polymeric composite gel beads-encapsulated microorganism for efficient degradation of phenolic compounds [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 301-306. |
[4] | Mengjiao Xu, Zhuotao Tan, Chenjie Zhu, Wei Zhuang, Hanjie Ying, Pingkai Ouyang. Recent advance of chemoenzymatic catalysis for the synthesis of chemicals: Scope and challenge [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 146-167. |
[5] | Bekir Engin Eser, Yan Zhang, Li Zong, Zheng Guo. Self-sufficient Cytochrome P450s and their potential applications in biotechnology [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 121-135. |
[6] | Jing Wang, Yongqin Lv. An enzyme-loaded reactor using metal-organic framework-templated polydopamine microcapsule [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 317-325. |
[7] | Chen Ma, Jing Wang, Xuelin Wang, Dandan Mai, Yuqi Jin, Kequan Chen, Xin Wang, Pingkai Ouyang. Efficient production of cyclic adenosine monophosphate from adenosine triphosphate by the N-terminal half of adenylate cyclase from Escherichia coli [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2167-2172. |
[8] | Yifei Zhang, Henry Hess. Microenvironmental engineering: An effective strategy for tailoring enzymatic activities [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 2028-2036. |
[9] | Liqun Shen, Ran Cang, Guang Yang, Anqi Zeng, He Huang, Zhigang Zhang. Aureobasidium subglaciale F134 is a bifunctional whole-cell biocatalyst for Baeyer-Villiger oxidation or selective carbonyl reduction controllable by temperature [J]. Chinese Journal of Chemical Engineering, 2020, 28(12): 3044-3051. |
[10] | Xinlei Wei, Pingping Han, Chun You. Facilitation of cascade biocatalysis by artificial multi-enzyme complexes—A review [J]. Chinese Journal of Chemical Engineering, 2020, 28(11): 2799-2809. |
[11] | Mohammad Hossein Sheikh-Mohseni, Sajjad Sedaghat, Pirouz Derakhshi, Aliakbar Safekordi. Green bio-synthesis of Ni/montmorillonite nanocomposite using extract of Allium jesdianum as the nano-catalyst for electrocatalytic oxidation of methanol [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2555-2565. |
[12] | Zheyu Wang, Yupei Jian, Yilei Han, Zhongwang Fu, Diannan Lu, Jianzhong Wu, Zheng Liu. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals [J]. Chinese Journal of Chemical Engineering, 2020, 28(10): 2499-2506. |
[13] | Yifeng Li, Chunyu Zhang, Yan Sun. Zwitterionic polymer-coated porous poly(vinyl acetate-divinyl benzene) microsphere: A new support for enhanced performance of immobilized lipase [J]. Chinese Journal of Chemical Engineering, 2020, 28(1): 242-248. |
[14] | Huanru Ding, Weirui Zhao, Changjiang Lü, Jun Huang, Sheng Hu, Shanjing Yao, Lehe Mei, Jinbo Wang, Jiaqi Mei. Biosynthesis of 4-hydroxyphenylpyruvic acid from L-tyrosine using recombinant Escherichia coli cells expressing membrane bound L-amino acid deaminase [J]. Chin.J.Chem.Eng., 2018, 26(2): 380-385. |
[15] | Liya Zhou, Haixia Mou, Jing Gao, Li Ma, Ying He, Yanjun Jiang. Preparation of cross-linked enzyme aggregates of nitrile hydratase ES-NHT-118 from E. coli by macromolecular cross-linking agent [J]. , 2017, 25(4): 487-492. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||