[1] Cerqueira Leite, R.C.D., Verde Leal, M.R.L., Barbosa Cortez, L.A., Griffin, W.M., Gaya Scandiffio, M.I., 2009. Can Brazil replace 5% of the 2025 gasoline world demand with ethanol? Energy, 34(5), 655-661 [2] Gupta, A., Verma, J.P., 2015. Sustainable bio-ethanol production from agro-residues: A review. Renewable and Sustainable Energy Reviews, 41, 550-567 [3] Yan, S., Chen, X., Wu, J., Wang, P., 2012. Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl. Microbiol. Biot., 94(3), 829-838 [4] Jin, Y., Lin, Y., Wang, P., Jin, R., Gao, M., Wang, Q., Chang, T., Ma, H., 2019. Volatile fatty acids production from saccharification residue from food waste ethanol fermentation: Effect of pH and microbial community. Bioresource Technol, 292 [5] Ntaikou, I., Menis, N., Alexandropoulou, M., Antonopoulou, G., Lyberatos, G., 2018. Valorization of kitchen biowaste for ethanol production via simultaneous saccharification and fermentation using co-cultures of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Bioresource Technol., 263, 75 [6] Zou, H., Gao, M., Wang, Q., Zhang, W., Wu, C., Song, N., 2019. Metabolic analysis of efficient methane production from food waste with ethanol pre-fermentation using carbon isotope labeling. Bioresource Technol., 291 [7] Pandey, P., Shinde, V.N., Deopurkar, R.L., Kale, S.P., Patil, S.A., Pant, D., 2016. Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energ., 168, 706-723 [8] Kumar, R., Singh, L., Zularisam, A.W., 2016. Exoelectrogens: Recent advances in molecular drivers involved in extracellular electron transfer and strategies used to improve it for microbial fuel cell applications. Renew. Sust. Energ. Rev., 56, 1322-1336 [9] Ren, Y., Yu, M., Wu, C., Wang, Q., Gao, M., Huang, Q., Liu, Y., 2018. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies. Bioresource Technol., 247, 1069-1076 [10] Samsudeen, N., Radhakrishnan, T.K., Matheswaran, M., 2015. Performance Comparison of Triple and Dual Chamber Microbial Fuel Cell Using Distillery Wastewater as a Substrate. Environ. Prog. Sustain., 34(2), 589-594 [11] Jia, J., Tang, Y., Liu, B., Wu, D., Ren, N., Xing, D., 2013. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Bioresource Technol., 144, 94-99 [12] Zhang, J., Pan, X., Zuo, W., Su, X., 2015. Treatment of kitchen waste by microbial fuel cells and aerobic composting. Chinese Journal of Environmental Engineering, 9(3), 1389-1396 [13] Peng, Z., Fang, S., Xiang, Z., Shen, Z., Cao, D., 2013. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energ. Environ. Sci., 7(1), 442-450 [14] Kazuhide, K., Kazuhito, H., Shuji, N., 2012. Instantaneous one-pot synthesis of Fe-N-modified graphene as an efficient electrocatalyst for the oxygen reduction reaction in acidic solutions. Chem. Commun., 48(82), 10213-10215 [15] Li, S., Pan, Q., Xiao, K., Ouyang, T., Li, N., Liu, Z. 2019. “Metallic Co9S8 Coupled Hollow N-Doped Carbon Sphere with Synergistic Interface Structure for Efficient Electricity Generation in Microbial Fuel Cells”, CHEMCATCHEM, 11(24, SI), 6116-6123 [16] Li, J., Wu, X., Chen, L., Li, N., Liu, Z. 2018. “Bifunctional MOF-derived Co-N-doped carbon electrocatalysts for high-performance zinc-air batteries and MFCs”, ENERGY, 156, 95-102 [17] Nishi, Y., Uryu, M., Yamanaka, S., Watanabe, K., Kitamura, N., Iguchi, M., Mitsuhashi, S., 1990. The structure and mechanical properties of sheets prepared from bacterial cellulose. J. Mater. Sci., 25(6), 2997-3001 [18] Liang, H., Guan, Q., Zhu-Zhu, Song, L., Yao, H., Lei, X., Yu, S., 2012. Highly conductive and stretchable conductors fabricated from bacterial cellulose. NPG Asia Mater., 4 [19] Liang, H., Wu, Z., Chen, L., Li, C., Yu, S., 2015. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: An efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy, 11, 366-376 [20] Wu, Z.Y., Liang, H.W., Li, C., Hu, B.C., Xu, X.X., Wang, Q., Chen, J.F., Yu, S.H., 2014. Dyeing bacterial cellulose pellicles for energetic heteroatom doped carbon nanofiber aerogels. Nano Res., 7(12), 1861-1872 [21] Li, H., Ma, H., Liu, T., Ni, J., Wang, Q., 2019. An excellent alternative composite modifier for cathode catalysts prepared from bacterial cellulose doped with Cu and P and its utilization in microbial fuel cell. Bioresource Technol., 289, 121661 [22] Ma, H., Yang, J., Jia, Y., Wang, Q., Tashiro, Y., Sonomoto, K., 2016. Stillage reflux in food waste ethanol fermentation and its by-product accumulation. Bioresource Technol., 209, 254-258 [23] Ma, H., Peng, C., Jia, Y., Wang, Q., Tu, M., Gao, M., 2018. Effect of fermentation stillage of food waste on bioelectricity production and microbial community structure in microbial fuel cells. ROYAL SOCIETY OPEN SCIENCE, 5(9) [24] Hongzhi, M., Cheng, P., Huiyu, L., Qunhui, W., Maobing, T., 2018. Research on stillage storage time for MFC performance and control methods. Bioresource Technology Reports [25] Liang, D.W., Peng, S.K., Lu, S.F., Liu, Y.Y., Lan, F., Xiang, Y., 2011. Enhancement of hydrogen production in a single chamber microbial electrolysis cell through anode arrangement optimization. Bioresour Technol, 102(23), 10881-10885 [26] Behera, M., Jana, P.S., More, T.T., Ghangrekar, M.M., 2010. Rice mill wastewater treatment in microbial fuel cells fabricated using proton exchange membrane and earthen pot at different pH. Bioelectrochemistry, 79(2), 228-233 [27] Li Y, Wang J, Li X, et al. 2012. Nitrogen-doped graphene nanosheets as cathode materials with excellent electrocatalytic activity for high capacity lithium-oxygen batteries[J]. Electrochemistry Communications, 18, 12-15 [28] Zhang H J, Yuan X, Sun L, et al. 2012. Synthesis and characterization of non-precious metal binary catalyst for oxygen reduction reaction in proton exchange membrane fuel cells[J]. Electrochimica Acta, 77, 324-329 [29] Deval, A.S., Parikh, H.A., Kadier, A., Chandrasekhar, K., Bhagwat, A.M., Dikshit, A.K., 2016. Sequential microbial activities mediated bioelectricity production from distillery wastewater using bio-electrochemical system with simultaneous waste remediation. Int. J. Hydrogen Energ., 42(12), 1130–1141 [30] Cheng, S., Logan, B.E., 2011. Increasing power generation for scaling up single-chamber air cathode microbial fuel cells. Bioresource Technol., 102(6), 4468-4473 [31] Lee, H.S., Parameswaran, P., Kato-Marcus, A., Torres, C.I., Rittmann, B.E., 2008. Evaluation of energy-conversion efficiencies in microbial fuel cells (MFCs) utilizing fermentable and non-fermentable substrates. Water Res., 42(6), 1501-1510 [32] Sakdaronnarong, C., Ittitanakam, A., Tanubumrungsuk, W., Chaithong, S., Thanosawan, S., Sinbuathong, N., Jeraputra, C., 2015. Potential of lignin as a mediator in combined systems for biomethane and electricity production from ethanol stillage wastewater. Renew. Energ., 76, 242-248 [33] Li, X.M., Cheng, K.Y., Selvam, A., Wong, J.W.C., 2013. Bioelectricity production from acidic food waste leachate using microbial fuel cells: Effect of microbial inocula. Process Biochem., 48(2), 283-288 [34] Moharir, P.V., Tembhurkar, A.R., 2018. Comparative performance evaluation of novel polystyrene membrane with ultrex as Proton Exchange Membranes in Microbial Fuel Cell for bioelectricity production from food waste. Bioresource Technol., 266, 291-296 [35] Li, H., Tian, Y., Zuo, W., Zhang, J., Pan, X., Li, L., Su, X., 2016. Electricity generation from food wastes and characteristics of organic matters in microbial fuel cell. Bioresour Technol, 205, 104-110 [36] Chen, Z., Zhang, S., Zhong, L., 2019. Simultaneous sulfide removal, nitrogen removal and electricity generation in a coupled microbial fuel cell system. Bioresource Technol., 291, 121888 [37] Ji, J.Y., Xing, Y.J., Ma, Z.T., Cai, J., Zheng, P., Lu, H.F., 2013. Toxicity assessment of anaerobic digestion intermediates and antibiotics in pharmaceutical wastewater by luminescent bacterium. J. Hazard. Mater., 246-247(1), 319-323 [38] Zieliå Ska, A., Oleszczuk, P., 2016. Effect of pyrolysis temperatures on freely dissolved polycyclic aromatic hydrocarbon (PAH) concentrations in sewage sludge-derived biochars. Chemosphere, 153, 68-74 [39] Zielińska, A., Oleszczuk, P., 2015. The conversion of sewage sludge into biochar reduces polycyclic aromatic hydrocarbon content and ecotoxicity but increases trace metal content. Biomass Bioenerg., 75, 235-244 [40] B.E. Logan, B. Hamelers, R. Rozendal, U. Schroder, J. Keller, S. Freguia, P. Aelterman, W. Verstraete, K. Rabaey, 2006. Microbial fuel cells: methodology and technology, Environ. Sci. Technol. 40:5181–5192 |