[1] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals:environmental persistence, toxicity, and bioaccumulation, J. Chem. 2019 (2019) 1-14 [2] H. Patel, Batch and continuous fixed bed adsorption of heavy metals removal using activated charcoal from neem (Azadirachta indica) leaf powder, Sci Rep 10 (1) (2020) 16895 [3] G.A. Ozin, A. Kuperman, A. Stein, Advanced zeolite, materials science, Angew. Chem. Int. Ed. Engl. 28 (3) (1989) 359-376 [4] K. Ojha, N.C. Pradhan, A.N. Samanta, Zeolite from fly ash:synthesis and characterization, Bull. Mater. Sci. 27 (6) (2004) 555-564 [5] V. van Speybroeck, K. Hemelsoet, L. Joos, M. Waroquier, R.G. Bell, C.R. Catlow, Advances in theory and their application within the field of zeolite chemistry, Chem Soc Rev 44 (20) (2015) 7044-7111 [6] Y.L. Jiao, L. Forster, S.J. Xu, H.H. Chen, J.F. Han, X.Q. Liu, Y.T. Zhou, J.M. Liu, J.S. Zhang, J.H. Yu, C. D'Agostino, X.L. Fan, Creation of Al-enriched mesoporous ZSM-5 nanoboxes with high catalytic activity:converting tetrahedral extra-framework Al into framework sites by post treatment, Angew Chem Int Ed Engl 59 (44) (2020) 19478-19486 [7] Y.L. Jiao, A.L. Adedigba, N.F. Dummer, J.M. Liu, Y.T. Zhou, Y.N. Guan, H.Y. Shen, M. Perdjon, G.J. Hutchings, The effect of T-atom ratio and TPAOH concentration on the pore structure and titanium position in MFI-Type titanosilicate during dissolution-recrystallization process, Microporous Mesoporous Mater. 305 (2020) 110397 [8] Y.N. Zhao, Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater, Environ. Eng. Sci. 33 (7) (2016) 443-454 [9] E. Erdem, N. Karapinar, R. Donat, The removal of heavy metal cations by natural zeolites, J. Colloid Interface Sci. 280 (2) (2004) 309-314 [10] Y. Taamneh, S. Sharadqah, The removal of heavy metals from aqueous solution using natural Jordanian zeolite, Appl. Water Sci. 7 (4) (2017) 2021-2028 [11] S. Guida, C. Potter, B. Jefferson, A. Soares, Preparation and evaluation of zeolites for ammonium removal from municipal wastewater through ion exchange process, Sci Rep 10 (1) (2020) 12426 [12] E. Kendrick, S. Dann, Erratum to "Synthesis, properties and structure of ion exchanged hydrosodalite, J. Solid State Chem. 178 (6) (2005) 2176 [13] S. Golbad, P. Khoshnoud, N. Abu-Zahra, Hydrothermal synthesis of hydroxy sodalite from fly ash for the removal of lead ions from water, Int. J. Environ. Sci. Technol. 14 (1) (2017) 135-142 [14] S.M. Kamyab, S. Modabberi, C.D. Williams, A. Badiei, Synthesis of sodalite from sepiolite by alkali fusion method and its application to remove Fe3+, Cr3+, and Cd2+ from aqueous solutions, Environ. Eng. Sci. 37 (10) (2020) 689-701 [15] A.Á.B. Maia, R.F. Neves, R.S. Angélica, H. Pöllmann, Synthesis of sodalite from Brazilian Kaolin wastes, Clay Miner. 50 (5) (2015) 663-675 [16] X.Y. Li, Y. Jiang, X.Q. Liu, L.Y. Shi, D.Y. Zhang, L.B. Sun, Direct synthesis of zeolites from a natural clay, attapulgite, ACS Sustain. Chem. Eng. 5 (7) (2017) 6124-6130 [17] E.B. Drag, A. Miecznikowski, F. Abo-Lemon, M. Rutkowski, Synthesis of A, X and Y zeolites from clay minerals, Stud. Surf. Sci. Catal. 24 (1985) 147-154 [18] O. Eterigho-Ikelegbe, S. Bada, M.O. Daramola, R. Falcon, Synthesis of high purity hydroxy sodalite nanoparticles via pore-plugging hydrothermal method for inorganic membrane development:Effect of synthesis variables on crystallinity, crystal size and morphology, Mater. Today:Proc. 38 (2021) 675-681 [19] V.J. Inglezakis, H. Grigoropoulou, Effects of operating conditions on the removal of heavy metals by zeolite in fixed bed reactors, J Hazard Mater 112 (1-2) (2004) 37-43 [20] S. Mohan, G. Sreelakshmi, Fixed bed column study for heavy metal removal using phosphate treated rice husk, J Hazard Mater 153 (1-2) (2008) 75-82 [21] H. Yu, J. Shen, J. Li, X. Sun, W. Han, X. Liu, L. Wang, Preparation, characterization and adsorption properties of sodalite pellets, Mater. Lett. 132 (2014) 259-262 [22] X.X. Ou, F. Pilitsis, N.H. Xu, S.F.R. Taylor, J. Warren, A. Garforth, J.S. Zhang, C. Hardacre, Y.L. Jiao, X.L. Fan, On developing ferrisilicate catalysts supported on silicon carbide (SiC) foam catalysts for continuous catalytic wet peroxide oxidation (CWPO) reactions, Catal. Today 356 (2020) 631-640 [23] Y.L. Jiao, X.X. Ou, J.S. Zhang, X.L. Fan, Structured ZSM-5 coated SiC foam catalysts for process intensification in catalytic cracking of n-hexane, React. Chem. Eng. 4 (2) (2019) 427-435 [24] X.X. Ou, F. Pilitsis, Y.L. Jiao, Y. Zhang, S.J. Xu, M. Jennings, Y. Yang, S.F.R. Taylor, A. Garforth, H.P. Zhang, C. Hardacre, Y. Yan, X.L. Fan, Hierarchical Fe-ZSM-5/SiC foam catalyst as the foam bed catalytic reactor (FBCR) for catalytic wet peroxide oxidation (CWPO), Chem. Eng. J. 362 (2019) 53-62 [25] P. Yan, X.G. Li, H. Li, X. Gao, Hydrodynamics and flow mechanism of foam column Trays:Contact angle effect, Chem. Eng. Sci. 176 (2018) 220-232 [26] M.J. Regufe, A.F.P. Ferreira, J.M. Loureiro, A. Rodrigues, A.M. Ribeiro, Electrical conductive 3D-printed monolith adsorbent for CO2 capture, Microporous Mesoporous Mater. 278 (2019) 403-413 [27] Z. Zhao, H. Li, X. Li, A.N. Pavlenko, X. Gao, Flow pattern of miscellaneous liquids with varied flow rates on structured corrugation SiC foam packing, J. Eng. Thermophys. 28 (3) (2019) 305-312 [28] H. Li, Z.Q. Hao, J. Murphy, X.G. Li, X. Gao, Experimental study of liquid renewal on the sheet of structured corrugation SiC foam packing and its dispersion coefficients, Chem. Eng. Sci. 180 (2018) 11-19 [29] H.H. Chen, Y. Shao, Y.B. Mu, H. Xiang, R.X. Zhang, Y.B. Chang, C. Hardacre, C. Wattanakit, Y.L. Jiao, X.L. Fan, Structured silicalite-1 encapsulated Ni catalyst supported on SiC foam for dry reforming of methane, AIChE J. 67(4) (2020) e17126 [30] R.X. Zhang, H.H. Chen, Y.B. Mu, S. Chansai, X.X. Ou, C. Hardacre, Y.L. Jiao, X.L. Fan, Structured Ni@NaA zeolite supported on silicon carbide foam catalysts for catalytic carbon dioxide methanation, AIChE J. 66(11) (2020) e17007 [31] X. Gao, Q.Y. Ding, Y. Wu, Y.L. Jiao, J.S. Zhang, X.G. Li, H. Li, Kinetic study of esterification over structured ZSM-5-coated catalysts based on fluid flow situations in macrocellular foam materials, React. Chem. Eng. 5 (3) (2020) 485-494 [32] P. Yan, X.G. Li, H. Li, Y.Y. Shao, H. Zhang, X. Gao, Hydrodynamics and mechanism of hydrophobic foam column tray:Contact angle hysteresis effect, AIChE J 66 (1) (2020) e16793 [33] C. Parra-Cabrera, C. Achille, S. Kuhn, R. Ameloot, 3D printing in chemical engineering and catalytic technology:structured catalysts, mixers and reactors, Chem Soc Rev 47 (1) (2018) 209-230 [34] S. Couck, J. Cousin-Saint-remi, S. van der Perre, G.V. Baron, C. Minas, P. Ruch, J.F.M. Denayer, 3D-printed SAPO-34 monoliths for gas separation, Microporous Mesoporous Mater. 255 (2018) 185-191 [35] F. Putz, S. Scherer, M. Ober, R. Morak, O. Paris, N. Hüsing, 3D printing of hierarchical porous silica and α-quartz, Adv. Mater. Technol. 3 (7) (2018) 1800060 [36] X. Li, A.A. Alwakwak, F. Rezaei, A.A. Rownaghi, Synthesis of cr, Cu, ni, and Y-doped 3D-printed ZSM-5 monoliths and their catalytic performance for n-hexane cracking, ACS Appl. Energy Mater. 1 (6) (2018) 2740-2748 [37] S. Lawson, A.A. Alwakwak, A.A. Rownaghi, F. Rezaei, Gel-print-grow:a new way of 3D printing metal-organic frameworks, ACS Appl Mater Interfaces 12 (50) (2020) 56108-56117 [38] D.X. Zhang, J.F. Xiao, Q.Q. Guo, J. Yang, 3D-printed highly porous and reusable chitosan monoliths for Cu(II) removal, J. Mater. Sci. 54 (8) (2019) 6728-6741 [39] H. Thakkar, S. Eastman, A. Hajari, A.A. Rownaghi, J.C. Knox, F. Rezaei, 3D-printed zeolite monoliths for CO2 removal from enclosed environments, ACS Appl Mater Interfaces 8 (41) (2016) 27753-27761 [40] S. Wang, P. Bai, M.Z. Sun, W. Liu, D.D. Li, W.Z. Wu, W.F. Yan, J. Shang, J.H. Yu, Fabricating mechanically robust binder-free structured zeolites by 3D printing coupled with zeolite soldering:a superior configuration for CO2 capture, Adv. Sci. 6 (17) (2019) 1901317 [41] G.J.H. Lim, Y. Wu, B.B. Shah, J.J. Koh, C.K. Liu, D. Zhao, A.K. Cheetham, J. Wang, J. Ding, 3D-printing of pure metal-organic framework monoliths, ACS Mater. Lett. 1 (1) (2019) 147-153 [42] P. Aprea, D. Caputo, N. Gargiulo, B. Gennaro, F. Iucolano, B. Liguori, C. Colella, Ion exchange kinetics and thermodynamics of hydrosodalite, a narrow pore zeolite, J. Porous Mater. 21 (5) (2014) 643-651 [43] R.C. Andrades, R.F. Neves, F.R.V. Díaz, A.H.M. Júnior, Influence of alkalinity on the synthesis of zeolite A and hydroxysodalite from metakaolin, J. Nano Res. 61 (2020) 51-60 [44] E.B.G. Johnson, S.E. Arshad, Hydrothermally synthesized zeolites based on kaolinite:a review, Appl. Clay Sci. 97-98 (2014) 215-221 [45] G. Kakali, T. Perraki, S. Tsivilis, E. Badogiannis, Thermal treatment of kaolin:the effect of mineralogy on the pozzolanic activity, Appl. Clay Sci. 20 (1-2) (2001) 73-80 [46] R.M. Barrer, Hydrothermal Chemistry of Zeolites, Academic Press, New York, 1982 [47] V. Berkgaut, A. Singer, High capacity cation exchanger by hydrothermal zeolitization of coal fly ash, Appl. Clay Sci. 10 (5) (1996) 369-378 [48] A. Michot, D.S. Smith, S. Degot, C. Gault, Thermal conductivity and specific heat of kaolinite:Evolution with thermal treatment, J. Eur. Ceram. Soc. 28 (14) (2008) 2639-2644 [49] S.O. Otieno, F.O. Kengara, J.C. Kemmegne-Mbouguen, H.W. Langmi, C.B.O. Kowenje, R. Mokaya, The effects of metakaolinization and fused-metakaolinization on zeolites synthesized from quartz rich natural clays, Microporous Mesoporous Mater. 290 (2019) 109668 [50] X.L. Fan, Y.L. Jiao, Porous materials for catalysis. Sustainable Nanoscale Engineering. Elsevier Amsterdam (2020) 115-137. [51] C. Rosales-Landeros, C.E. Barrera-Díaz, B. Bilyeu, V.V. Guerrero, F.U. Núñez, A review on Cr(VI) adsorption using inorganic materials, Am. J. Anal. Chem. 4 (7) (2013) 8-16 |