[1] S.S. Kalsi, K.A. Subramanian, Effect of simulated biogas on performance, combustion and emissions characteristics of a biodiesel fueled diesel engine, Renew. Energ. 106 (2017) 78-90 [2] N.H. Kasmuri, S.K. Kamarudin, S.R.S. Abdullah, H.A. Hasan, A.M. Som, Process system engineering aspect of bio-alcohol fuel production from biomass via pyrolysis:An overview, Renew. Sust. Energ. Rev. 79 (2017) 914-923 [3] A.K. Agarwal, J.G. Gupta, A. Dhar, Potential and challenges for large-scale application of biodiesel in automotive sector, Prog. Energ. Comb. Sci. 61 (2017) 113-149 [4] Q. Shu, W. Zou, J. He, H. Lesmana, C. Zhang, L. Zou, Y. Wang, Preparation of the F——SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol, Renew. Energ. 135 (2019) 836-845 [5] Y.A. Rodikova, E.G. Zhizhina, Z.P. Pai, Catalytic way of transforming 2, 3-dimethylphenol to para-quinone with the use of vanadium-containing heteropoly acids, Appl. Catal. A:Gen. 549 (2018) 216-224 [6] A. Alazman, D. Belic, E.F. Kozhevnikova, I.V. Kozhevnikov, Isomerisation of n-hexane over bifunctional Pt-heteropoly acid catalyst:Enhancing effect of gold, J. Catal. 357 (2018) 80-89 [7] R.F. Cotta, K.A. da Silva Rocha, E.F. Kozhevnikova, I.V. Kozhevnikov, E.V. Gusevskaya, Heteropoly acid catalysts in upgrading of biorenewables:Cycloaddition of aldehydes to monoterpenes in green solvents, Appl. Catal. B:Environ. 217 (2017) 92-99 [8] M.A. Hanif, S. Nisar, U. Rashid, Supported solid and heteropoly acid catalysts for production of biodiesel, Catal. Rev. 59 (2017) 165-188 [9] Q.Y. Zhang, F.F. Wei, Q. Li, J.S. Huang, Y.M. Feng, Y.T. Zhang, Mesoporous Ag1(NH4)2PW12O40 heteropolyacids as effective catalysts for the esterification of oleic acid to biodiesel, RSC Adv. 7 (2017) 51090-51095 [10] S. Gopinath, P.V. Kumar, P.S.M. Kumar, K.Y. Arafath, S. Sivanesan, P. Baskaralingam, Cs-tungstosilicic acid/Zr-KIT-6 for esterification of oleic acid and transesterification of non-edible oils for green diesel production, Fuel 234 (2018) 824-835 [11] L.R.V. da Conceição, L.M. Carneiro, D.S. Giordani, H.F. de Castro, Synthesis of biodiesel from macaw palm oil using mesoporous solid catalyst comprising 12-molybdophosphoric acid and niobia, Renew. Energ. 113 (2017) 119-128 [12] A.K.F. Carvalho, L.R.V. da Conceição, J.P.V. Silva, V.H. Perez, H.F. de Castro, Biodiesel production from Mucor circinelloides using ethanol and heteropolyacid in one and two-step transesterification, Fuel 202 (2017) 503-511 [13] T. Tong, Y. Li, R. Hou, X. Wang, S. Wang, Decoration of chitosan microspheres with Brønsted heteropolyacids and Lewis ion Ti:Trifunctional catalysts for esterification to biodiesel, RSC Adv. 7 (2017) 42422-42429 [14] J. Alcañiz-Monge, B.E. Bakkali, G. Trautwein, S. Reinoso, Zirconia-supported tungstophosphoric heteropolyacid as heterogeneous acid catalyst for biodiesel production, Appl. Catal. B:Environ. 224 (2018) 194-203 [15] C.N. Kato, T. Ogasawara, A. Kondo, D. Kato, Heterogeneous esterification of fatty acids with methanol catalyzed by Lewis acidic organozirconium complexes with Keggin-type mono-aluminum-substituted polyoxotungstates, Catal. Commun. 96 (2017) 41-45 [16] Q. Shu, G. Tang, H. Lesmana, L. Zou, D. Xiong, Preparation, characterization and application of a novel solid Brönsted acid catalyst SO42-/La3+/C for biodiesel production via esterification of oleic acid and methanol, Renew. Energ. 119 (2018) 253-261 [17] R.F. Cotta, K.A. da Silva Rocha, E.F. Kozhevnikova, I.V. Kozhevnikov, E.V. Gusevskaya, Coupling of monoterpenic alkenes and alcohols with benzaldehyde catalyzed by silica-supported tungstophosphoric heteropoly acid, Catal. Today 289 (2017) 14-19 [18] T. Shamsi, A. Amoozadeh, E. Tabrizian, S.M. Sajjadi, A new zwitterionic nano-titania supported Keggin phosphotungstic heteropolyacid:An efficient and recyclable heterogeneous nanocatalyst for the synthesis of 2, 4, 5-triaryl substituted imidazoles, Reac. Kinet. Mech. Cat. 121 (2017) 505-522 [19] A.E.A.A. Said, M.M.A. El-Wahab, M.M. Abdelhak, The role of Brønsted acid site strength on the catalytic performance of phosphotungstic acid supported on nano γ-alumina catalysts for the dehydration of ethanol to diethyl ether, Reac. Kinet. Mech. Cat. 122 (2017) 433-449 [20] M. Almohalla, I. Rodriguez-Ramos, L.S. Ribeiro, J.J. Orfao, M.F.R. Pereira, A. Guerrero-Ruiz, Cooperative action of heteropolyacids and carbon supported Ru catalysts for the conversion of cellulose, Catal. Today 301 (2018) 65-71 [21] A. Popa, V. Sasca, O. Verdes, C. Ianasi, R. Banica, Heteropolyacids anchored on amino-functionalized MCM-41 and SBA-15 and its application to the ethanol conversion reaction, J. Therm. Anal. Calorim. 127 (2017) 319-334 [22] D.U. Zuru, Z. Zainal, M.Z. Hussein, A.M. Jaafar, H.N. Lim, S.K. Chang, Theoretical and experimental models for the synthesis of single-walled carbon nanotubes and their electrochemical properties, J. Appl. Electrochem. 113 (2018) 1-18 [23] R. Bhatia, S.K. Ujjain, Soluble single-walled carbon nanotubes for photovoltaics, Mater. Lett. 190 (2017) 165-168 [24] T. Li, Z. Tang, Z. Huang, J. Yu, A comparison between the mechanical and thermal properties of single-walled carbon nanotubes and boron nitride nanotubes, Physica E 85 (2017) 137-142 [25] K.V.M.K. Kireeti, N. Jha, Surface tailored single walled carbon nanotubes as catalyst support for direct methanol fuel cell, J. Power Sources 364 (2017) 392-399 [26] H. Yu, Y. Jin, Z. Li, F. Peng, H. Wang, Synthesis and characterization of sulfonated single-walled carbon nanotubes and their performance as solid acid catalyst, J. Solid State Chem. 181 (2008) 432-438 [27] J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, Z. Du, Effect of chemical oxidation on the structure of single-walled carbon nanotubes, J. Phys. Chem. B 107 (2015) 3712-3718 [28] X. Han, Y. Kuang, C. Xiong, Q. Chen, C.T. Hung, L.L. Liu, S.B. Liu, Heterogeneous amino acid-based tungstophosphoric acids as efficient and recyclable catalysts for selective oxidation of benzyl alcohol, Korean J. Chem. Eng. 34 (2017) 1-10 [29] M.C.F. Soares, M.M. Viana, Z.L. Schaefer, V.S. Gangoli, Y. Cheng, V. Caliman, M. Wong, G.G. Silva, Surface modification of carbon black nanoparticles by dodecylamine:Thermal stability and phase transfer in brine medium, Carbon 72 (2014) 287-295 [30] B.S. Yang, J. Yang, D.Y. Kim, J.K. Kim, W.J. Hwang, G.J. Kwon, Characteristics of wood tar produced as byproduct from two types of the kiln in the manufacture of oak charcoal, J. Korean Wood Sci. Technol. 45 (2017) 772-786 [31] W. Xie, X. Yang, P. Hu, Cs2.5H0.5PW12O40, encapsulated in metal-organic framework uio-66 as heterogeneous catalysts for acidolysis of soybean oil, Catal. Lett. 147 (2017) 1-11 [32] X.Q. Liu, J.L. Xie, OH-related infrared absorption spectra in silicate glasses, Adv. Mater. Res. 295-297 (2011) 1108-1112 [33] M. Gorsd, G. Sathicq, G. Romanelli, L. Pizzio, M. Blanco, Tungstophosphoric acid supported on core-shell polystyrene-silica microspheres or hollow silica spheres catalyzed trisubstituted imidazole synthesis by multicomponent reaction, J. Mol. Catal. A:Chem. 420 (2016) 294-302 [34] A. Badawi, N. Al-Hosiny, S. Abdallah, A. Merazga, H. Talaat, Single wall carbon nanotube/titania nanocomposite photoanodes enhance the photovoltaic performance of cadmium selenide quantum dot-sensitized solar cells, Mat. Sci. Semicon. Proc. 26 (2014) 162-168 [35] G. Liu, J. Han, X. Zhou, L. Huang, F. Zhang, X. Wang, C. Ding, X. Zheng, H. Han, C. Li, Enhancement of visible-light-driven O2, evolution from water oxidation on WO3, treated with hydrogen, J. Catal. 11 (2013) 148-152 [36] R. Camposeco, S. Castillo, I. Mejia-Centeno, J. Navarrete, V. Rodriguez-Gonzalez, Behavior of Lewis and Brönsted surface acidity featured by Ag, Au, Ce, La, Fe, Mn, Pd, Pt, V and W decorated on protonated titanate nanotubes, Micropor. Mesopor. Mat. 236 (2016) 235-243 [37] B.X. Peng, Q. Shu, J.F. Wang, G.R. Wang, D.Z. Wang, M.H. Han, Biodiesel production from waste oil feedstocks by solid acid catalysis, Proc. Saf. Environ. Prot. 86 (2008) 441-447 [38] M.K. Lam, K.T. Lee, A.R. Mohamed, Sulfated tin oxide as solid superacid catalyst for transesterification of waste cooking oil:An optimization study, Appl. Catal. B:Environ. 93 (2009) 134-139 [39] H.Y. Shin, S.H. An, R. Sheikh, Y.H. Park, S.Y. Bae, Transesterification of used vegetable oils with a Cs-doped heteropolyacid catalyst in supercritical methanol, Fuel 96 (2012) 572-578 [40] G. Sunita, B.M. Devassy, A. Vinu, D.P. Sawant, V.V. Balasubramanian, S.B. Halligudi, Synthesis of biodiesel over zirconia-supported isopoly and heteropoly tungstate catalysts, Catal. Commun. 9 (2008) 696-702 [41] F. Cao, Y. Chen, F. Zhai, J. Li, J. Wang, X. Wang, S. Wang, W. Zhu, Biodiesel production from high acid value waste frying oil catalyzed by superacid heteropolyacid, Biotechnol. Bioeng. 101 (2008) 93-100 [42] W. Trakarnpruk, Biodiesel production from palm fatty acids distillate using tungstophosphoric acid-and Cs-salt immobilized-silica, Walailak J. Sci. Tech. 9 (2012) 37-47 [43] S. Zhang, Y.G. Zu, Y.J. Fu, M. Luo, D.Y. Zhang, T. Efferth, Rapid microwaveassisted transesterification of yellow horn oil to biodiesel using a heteropolyacid solid catalyst, Bioresour. Technol. 101 (2010), 931-936 |