[1] J. Neumann, S. Binder, A. Apfelbacher, J.R. Gasson, P. Ramírez García, A. Hornung, Production and characterization of a new quality pyrolysis oil, char and syngas from digestate - Introducing the thermo-catalytic reforming process, J. Anal. Appl. Pyrolysis 113 (2015) 137–142, https://doi.org/10.1016/j.jaap.2014.11.022 [2] Mi D, Jiang R, Wang T. Production and market analysis of some aromatics products. Chemical Industry, 37(4)(2019)17-25. [3] C.A. Salman, S. Schwede, E. Thorin, J.Y. Yan, Enhancing biomethane production by integrating pyrolysis and anaerobic digestion processes, Appl. Energy 204 (2017) 1074–1083, https://doi.org/10.1016/j.apenergy.2017.05.006 [4] C.A. Salman, S. Schwede, M. Naqvi, E. Thorin, J.Y. Yan, Synergistic combination of pyrolysis, anaerobic digestion, and CHP plants, Energy Procedia 158 (2019) 1323–1329, https://doi.org/10.1016/j.egypro.2019.01.326 [5] S. Astals, V. Nolla-Ardèvol, J. Mata-Alvarez, Anaerobic co-digestion of pig manure and crude glycerol at mesophilic conditions: Biogas and digestate, Bioresour. Technol. 110 (2012) 63–70. [6] P. Weiland, Biogas production: Current state and perspectives, Appl. Microbiol. Biotechnol. 85 (4) (2010) 849–860. https://pubmed.ncbi.nlm.nih.gov/19777226/ [7] X.M. Ge, F.Q. Xu, Y.B. Li, Solid-state anaerobic digestion of lignocellulosic biomass: Recent progress and perspectives, Bioresour. Technol. 205 (2016) 239–249. https://pubmed.ncbi.nlm.nih.gov/26832395/ [8] B. Demirel, N.P. Göl, T. Onay, Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure, J. Mater. Cycles Waste Manag. 15 (2013) 242–246, https://doi.org/10.1007/s10163-012-0107-4 [9] D.L. Zhang, F. Wang, W.M. Yi, Z.H. Li, X.L. Shen, W.S. Niu, Comparison study on pyrolysis characteristics and kinetics of corn stover and its digestate by TG-FTIR, Bioresources 12 (2017) 8240–8254, https://doi.org/10.15376/BIORES.12.4.8240-8254 [10] J.J. Liang, Y.Q. Lin, S.B. Wu, C. Liu, M. Lei, C. Zeng, Enhancing the quality of bio-oil and selectivity of phenols compounds from pyrolysis of anaerobic digested rice straw, Bioresour. Technol. 181 (2015) 220–223. https://pubmed.ncbi.nlm.nih.gov/25647031/ [11] L.X. Liu, H.T. Chen, Y.J. Han, Determination and analysis of physical characteristics and fiber chemical composition of biogas residue, Trans. Chin. Soc. Agric. Eng. (2010) 26(7)277–280. (in Chinese) [12] W. Wang, D.J. Lee, Valorization of anaerobic digestion digestate: A prospect review, Bioresour. Technol. 323 (2021) 124626. https://pubmed.ncbi.nlm.nih.gov/33418353/ [13] J. Gao, J. Li, A.C. Wachemo, H. Yuan, X. Zuo, X. Li, Mass conversion pathway during anaerobic digestion of wheat straw, RSC Adv. 10 (46) (2020) 27720–27727. https://pubmed.ncbi.nlm.nih.gov/35516919/ [14] M.R.K. Manasa, N.R. Katukuri, S.S.D. Nair, Y. Haojie, Z.M. Yang, R.B. Guo, Role of biochar and organic substrates in enhancing the functional characteristics and microbial community in a saline soil, J Environ Manage 269 (2020) 110737. https://pubmed.ncbi.nlm.nih.gov/32425164/ [15] I. Piccoli, A. Torreggiani, C. Pituello, A. Pisi, F. Morari, O. Francioso, Automated image analysis and hyperspectral imagery with enhanced dark field microscopy applied to biochars produced at different temperatures, Waste Manag. 105 (2020) 457–466. https://pubmed.ncbi.nlm.nih.gov/32135467/ [16] Y. Wei, J.J. Hong, W.R. Ji, Thermal characterization and pyrolysis of digestate for phenol production, Fuel 232 (2018) 141–146, https://doi.org/10.1016/j.fuel.2018.05.134 [17] S. Opatokun, T. Kan, A. Shoaibi, C. Srinivasakannan, V. Strezov, Characterization of food waste and its digestate as feedstock for thermochemical processing, Energy \& Fuels 30 (2016) 1589–1597, https://doi.org/10.1021/ACS.ENERGYFUELS.5B02183 [18] J. Karaeva, S. Timofeeva, V. Bashkirov, K.S. Bulygina, Thermochemical processing of digestate from biogas plant for recycling dairy manure and biomass, Biomass Conversion and Biorefinery, (2021)https://www.semanticscholar.org/paper/905bf7ed52ab2ab5c1ea3428d39f2beb42aa83ac [19] Doukeh R, Bombos M, Bombos D, Vasilievici G, Radu E, Oprescu E-E. Pyrolysis of digestate from anaerobic digestion on tungsten oxide catalyst. Reaction Kinetics, Mechanisms and Catalysis, 132(2)2021)829-838. [20] J.H. Kim, J.I. Oh, Y.F. Tsang, Y.K. Park, J. Lee, E.E. Kwon, CO2-assisted catalytic pyrolysis of digestate with steel slag, Energy 191 (2020) 116529. [21] S.B. Ghimis, G. Vasilievici, E. Radu, S. Velea, R. Fierascu, Bio-oil produced via catalytic pyrolysis of the solid digestates from anaerobic co-digestion plants, 29(1) (2019) 89. [22] V. Paasikallio, F. Agblevor, A. Oasmaa, J. Lehto, J. Lehtonen, Catalytic pyrolysis of forest thinnings with ZSM-5 catalysts: Effect of reaction temperature on bio-oil physical properties and chemical composition, Energy \& Fuels 27 (2013) 7587–7601, https://doi.org/10.1021/EF401947F [23] X. Chen, Q.F. Che, S.J. Li, Z.H. Liu, H.P. Yang, Y.Q. Chen, X.H. Wang, J.G. Shao, H.P. Chen, Recent developments in lignocellulosic biomass catalytic fast pyrolysis: Strategies for the optimization of bio-oil quality and yield, Fuel Process. Technol. 196 (2019) 106180, https://doi.org/10.1016/j.fuproc.2019.106180 [24] S. Tan, Z.J. Zhang, J.P. Sun, Q.W. Wang, Recent progress of catalytic pyrolysis of biomass by HZSM-5, Chin. J. Catal. 34 (4) (2013) 641–650, https://doi.org/10.1016/S1872-2067(12)60531-2 [25] K.G. Wang, K.H. Kim, R.C. Brown, Catalytic pyrolysis of individual components of lignocellulosic biomass, Green Chem. 16 (2) (2014) 727–735, https://doi.org/10.1039/C3GC41288A [26] C.Y. Shen, X.Y. Jia, Y.F. Chen, L.C. Lu, F.Q. Wang, Y. Wei, F.W. Yu, Molten carbonate pyrolysis of digestate with metal-modified HZSM-5 for bio-based monophenols: Kinetics and mechanism study, J. Anal. Appl. Pyrolysis 151 (2020) 104929, https://doi.org/10.1016/j.jaap.2020.104929 [27] S. Kloss, F. Zehetner, A. Dellantonio, R. Hamid, F. Ottner, V. Liedtke, M. Schwanninger, M.H. Gerzabek, G. Soja, Characterization of slow pyrolysis biochars: Effects of feedstocks and pyrolysis temperature on biochar properties, J. Environ. Qual. 41 (4) (2012) 990–1000. https://pubmed.ncbi.nlm.nih.gov/22751041/ [28] T. Mani, P. Murugan, N. Mahinpey, Pyrolysis of oat straw and the comparison of the product yield to wheat and flax straw pyrolysis, Energy \& Fuels 25 (2011) 2803–2807, https://doi.org/10.1021/EF200546V [29] C.Q. Dong, Z.F. Zhang, Q. Lu, Y.P. Yang, Characteristics and mechanism study of analytical fast pyrolysis of poplar wood, Energy Convers. Manag. 57 (2012) 49–59, https://doi.org/10.1016/j.enconman.2011.12.012 [30] C.J. Liu, H.M. Wang, A.M. Karim, J.M. Sun, Y. Wang, Catalytic fast pyrolysis of lignocellulosic biomass, Chem. Soc. Rev. 43 (22) (2014) 7594–7623. https://pubmed.ncbi.nlm.nih.gov/24801125/ [31] J. Hu, X.X. Jiang, Pyrolysis characteristics and kinetics of lignin: Effect of starting lignins, Energy Sources A Recovery Util. Environ. Eff. 44 (3) (2022) 8096–8108, https://doi.org/10.1080/15567036.2020.1860160 [32] S.B. Wu, B.L. Xiang, J.Y. Liu, Y.L. Guo, S.B. Wu, B.L. Xiang, J.Y. Liu, Pyrolysis characteristics of technical alkali lignin, J. Beijing For. Univ. (2008) 30(5)143–147. [33] Q. Bu, H. Lei, M. Qian, G. Yadavalli, A thermal behavior and kinetics study of the catalytic pyrolysis of lignin, RSC Adv. 6 (2016) 100700–100707, https://doi.org/10.1039/C6RA22967K [34] B. Biswas, R. Singh, J. Kumar, A.A. Khan, B.B. Krishna, T. Bhaskar, Slow pyrolysis of prot, alkali and dealkaline lignins for production of chemicals, Bioresour. Technol. 213 (2016) 319–326. https://pubmed.ncbi.nlm.nih.gov/26873286/ [35] J. Cho, S. Chu, P. Dauenhauer, G. Huber, Kinetics and reaction chemistry for slow pyrolysis of enzymatic hydrolysis lignin and organosolv extracted lignin derived from Maplewood, Green Chem. 14 (2012) 428–439, https://doi.org/10.1039/C1GC16222E [36] D.Y. Che, Y.X. Sun, B.Z. Sun, S.H. Li, Experimental study on gas product release characteristics of lignin pyrolysis, Proc. CSEE (2015) 35(24)6439–6444. [37] W. Mu, H.X. Ben, A. Ragauskas, Y.L. Deng, Lignin pyrolysis components and upgrading—technology review, Bioenergy Res. 6 (2013) 1183–1204, https://doi.org/10.1007/s12155-013-9314-7 [38] W.Y. Deng, W.C. Yu, Y.X. Su, X.L. Wang, A review of pyrolysis and gasification of biomass for production of hydrogen-rich gas, Chem. Ind. Eng. Prog. (2013) 32(7)1534–1541. [39] X.T. Ren, C.S. Zhang, S.L. Li, Z.C. Tan, R.Q. Zhang, Pyrolysis of enzymatic hydrolysis lignin from the cornstalks residue, J. Cellul. Sci. Technol. (2012) 20(3)13–19. [40] Tan H, Wang S, Luo Z, Yu C, Cen K. Experimental study of lignin flash pyrolysis. Journal of Zhejiang University(EngineeringScience), (05) (2005)710-714. [41] X.N. Lin, S.J. Sui, S. Tan, C. Pittman Jr, J.P. Sun, Z.J. Zhang, Fast pyrolysis of four lignins from different isolation processes using py-GC/MS, Energies 8 (6) (2015) 5107–5121. https://doi.org/10.3390/en8065107 [42] V. Paasikallio, C. Lindfors, E. Kuoppala, Y. Solantausta, A. Oasmaa, J. Lehto, J. Lehtonen, Product quality and catalyst deactivation in a four day catalytic fast pyrolysis production Run, Green Chem. 16 (2014) 3549–3559, https://doi.org/10.1039/C4GC00571F [43] C.T. Ma, J.G. Geng, D. Zhang, X.F. Ning, Non-catalytic and catalytic pyrolysis of Ulva prolifera macroalgae for production of quality bio-oil, J. Energy Inst. 93 (1) (2020) 303–311, https://doi.org/10.1016/j.joei.2019.03.001 [44] S.R. Wang, X.J. Guo, K.G. Wang, Z.Y. Luo, Influence of the interaction of components on the pyrolysis behavior of biomass, J. Anal. Appl. Pyrolysis 91 (1) (2011) 183–189, https://doi.org/10.1016/j.jaap.2011.02.006 [45] Huang WW, Gong FY, Zhai Q, Li QX. Catalytic transformation of bio-oil to olefins with molecular sieve catalysts. Chinese Journal of Chemical Physics, 25(4) (2012)441-447. [46] S.R. Naqvi, M. Naqvi, Catalytic fast pyrolysis of rice husk: Influence of commercial and synthesized microporous zeolites on deoxygenation of biomass pyrolysis vapors, Int. J. Energy Res. 42 (3) (2018) 1352–1362, https://doi.org/10.1002/er.3943 [47] S.D. Stefanidis, K.G. Kalogiannis, E.F. Iliopoulou, A.A. Lappas, P.A. Pilavachi, In-situ upgrading of biomass pyrolysis vapors: Catalyst screening on a fixed bed reactor, Bioresour. Technol. 102 (17) (2011) 8261–8267. https://pubmed.ncbi.nlm.nih.gov/21723115/ [48] B. Cao, Z. Xia, S. Wang, A.E.F. Abomohra, N. Cai, Y.M. Hu, C. Yuan, L.L. Qian, L. Liu, X.L. Liu, B. Li, Z.X. He, Q. Wang, A study on catalytic co-pyrolysis of cellulose with seaweeds polysaccharides over ZSM-5: Towards high-quality biofuel production, J. Anal. Appl. Pyrolysis 134 (2018) 526–535, https://doi.org/10.1016/j.jaap.2018.07.020 [49] F. Wei, J.P. Cao, X.Y. Zhao, J. Ren, B. Gu, X.Y. Wei, Formation of aromatics and removal of nitrogen in catalytic fast pyrolysis of sewage sludge: A study of sewage sludge and model amino acids, Fuel 218 (2018) 148–154, https://doi.org/10.1016/j.fuel.2018.01.025 [50] K.G. Wang, R.C. Brown, Catalytic pyrolysis of corn dried distillers grains with solubles to produce hydrocarbons, ACS Sustain. Chem. Eng. 2 (9) (2014) 2142–2148, https://doi.org/10.1021/sc5003374 [51] H.X. Ben, A. Ragauskas, Influence of Si/Al ratio of ZSM-5 zeolite on the properties of lignin pyrolysis products, ACS Sustain. Chem. \& Eng. 1 (2013) 316–324, https://doi.org/10.1021/SC300074N [52] N. Rahimi, R. Karimzadeh, Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review, Appl. Catal. A Gen. 398 (1–2) (2011) 1–17, https://doi.org/10.1016/j.apcata.2011.03.009 [53] Y.T. Cheng, G. Huber, Chemistry of furan conversion into aromatics and olefins over HZSM-5: A model biomass conversion reaction, ACS Catal. 1 (2011) 611–628, https://doi.org/10.1021/CS200103J |