Chinese Journal of Chemical Engineering ›› 2025, Vol. 81 ›› Issue (5): 95-104.DOI: 10.1016/j.cjche.2024.12.019
Previous Articles Next Articles
Wenting Cheng, Qianqian Li, Ying Zhai, Huaigang Cheng, Fangqin Cheng
Received:2024-09-05
Revised:2024-12-16
Accepted:2024-12-24
Online:2025-03-11
Published:2025-05-28
Contact:
Wenting Cheng,E-mail:wtcheng@sxu.edu.cn
Supported by:Wenting Cheng, Qianqian Li, Ying Zhai, Huaigang Cheng, Fangqin Cheng
通讯作者:
Wenting Cheng,E-mail:wtcheng@sxu.edu.cn
基金资助:Wenting Cheng, Qianqian Li, Ying Zhai, Huaigang Cheng, Fangqin Cheng. Micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide in lithium chloride, potassium chloride, magnesium chloride and calcium chloride solutions[J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 95-104.
Wenting Cheng, Qianqian Li, Ying Zhai, Huaigang Cheng, Fangqin Cheng. Micellization behavior and thermodynamic properties of cetyltrimethylammonium bromide in lithium chloride, potassium chloride, magnesium chloride and calcium chloride solutions[J]. 中国化学工程学报, 2025, 81(5): 95-104.
Add to citation manager EndNote|Ris|BibTeX
URL: https://cjche.cip.com.cn/EN/10.1016/j.cjche.2024.12.019
| [1] H. Kumar, A. Katal, P. Rawat, FT-IR spectroscopic and micellization studies of cetyltrimethylammonium bromide in aqueous and aqueous solution of ionic liquid (1-butyl-3-methylimidazolium bromide) at different temperatures, J. Mol. Liq. 249 (2018) 227-232. [2] A. Di Crescenzo, P. Di Profio, G. Siani, R. Zappacosta, A. Fontana, Optimizing the interactions of surfactants with graphitic surfaces and clathrate hydrates, Langmuir 32 (26) (2016) 6559-6570. [3] N. Singh, R. Yeri, J. Chakraborty, Effect of ionic surfactants and alcohols on the morphology of CuSO4·5H2O crystals: combined use of factors and significance of threshold surfactant concentration, Ind. Eng. Chem. Res. 52 (43) (2013) 15041-15048. [4] S. Javadian, F. Nasiri, A. Heydari, A. Yousefi, A.A. Shahir, Modifying effect of imidazolium-based ionic liquids on surface activity and self-assembled nanostructures of sodium dodecyl sulfate, J. Phys. Chem. B 118 (15) (2014) 4140-4150. [5] C. Yang, X.F. Song, S.Y. Sun, Z. Sun, J.G. Yu, Effects of sodium dodecyl sulfate on the oriented growth of nesquehonite whiskers, Adv. Powder Technol. 24 (3) (2013) 585-592. [6] H. Wei, Q. Shen, Y. Zhao, Y. Zhou, D.J. Wang, D.F. Xu, On the crystallization of calcium carbonate modulated by anionic surfactants, J. Cryst. Growth 279 (3-4) (2005) 439-446. [7] Y.X. Wang, Basic research on additive-assisted preparation of MgO whiskers, Master Thesis, Shanxi Univ., China, 2020. (in Chinese). [8] W.T. Cheng, Q.Q. Li, Y.X. Wang, L. Fang, F.Q. Cheng, Formation and phase transformation of MgCO3·3H2O whiskers in the presence of sodium dodecyl sulfate, ACS Omega 8 (16) (2023) 14621-14629. [9] H.M. Zhou, Z.H. Yang, C.J. Yin, S.L. Yang, J. Li, Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries, Ceram. Int. 44 (16) (2018) 20514-20523. [10] H. Dhaouadi, H. Chaabane, F. Touati, Mg(OH)2 nanorods synthesized by A facile hydrothermal method in the presence of CTAB, Nano Micro Lett. 3 (3) (2011) 153-159. [11] D.M. Li, J. Huang, Z.H. Ren, Y.J. Lu, Y.J. He, S.W. Liu, J.J. Huang, Interfacial properties and micellization of octadecyltrimethylammonium bromide in aqueous solution containing short chain alcohol and effect of chain length of alcohol, j dispers sci technol 41 (6) (2020) 856-862. [12] R. Sheng, Q.Y. Ding, Z.H. Ren, D.N. Li, S.C. Fan, L.C. Le, X.F. Quan, Y. Wang, M.T. Yi, Y.X. Zhang, Y.X. Cao, H. Wang, J.R. Wang, Q.H. Zhang, Z.B. Qian, Interfacial and micellization behavior of binary mixture of amino sulfonate amphoteric surfactant and octadecyltrimethyl ammonium bromide: Effect of short chain alcohol and its chain length, J. Mol. Liq. 334 (2021) 116064. [13] W.T. Cheng, Z.B. Li, F.Q. Cheng, Solubility of Li2CO3 in Na-K-Li-Cl brines from 20 to 90°C, J. Chem. Thermodyn. 67 (2013) 74-82. [14] D. Kumar, M.S. Sheikh, J.M. Khan, B. Kumar, D.T. Jangde, Influence of additives on the interaction of antidepressant drug with TX-165 surfactant: Surface tension and FTIR analyses, J. Mol. Liq. 411 (2024) 125727. [15] M.S. Sheikh, J.M. Khan, B. Kumar, D.T. Jangde, D. Kumar, Exploration of the effect of NaCl/urea on aggregation process of imipramine hydrochloride drug and TX-165 mixture: a surface tension and UV-visible study, Colloids Surf. A Physicochem. Eng. Aspects 694 (2024) 134102. [16] J. Abedin, S. Mahbub, M.M. Rahman, A. Hoque, D. Kumar, J.M. Khan, A.M. El-Sherbeeny, Interaction of tetradecyltrimethylammonium bromide with bovine serum albumin in different compositions: Effect of temperatures and electrolytes/urea, Chin. J. Chem. Eng. 29 (2021) 279-287. [17] M.K. Sah, K. Edbey, Z.O. Ettarhouni, A. Bhattarai, D. Kumar, Conductometric and spectral analyses of dye-surfactant interactions between indigo carmine and N-alkyltrimethylammonium chloride, J. Mol. Liq. 399 (2024) 124413. [18] D. Kumar, Z. Farkas Agatic, K. Popovic, M. Posa, Binary mixed micelles of hexadecyltrimethylammonium bromide-sodium deoxycholate and dodecyltrimethylammonium bromide-sodium deoxycholate: thermodynamic stabilization and mixed micelle solubilization capacity of daidzein (isoflavonoid), Ind. Eng. Chem. Res. 63 (7) (2024) 3336-3348. [19] A. Alam, K.M. Anis-Ul-Haque, J.M. Khan, D. Kumar, M. Irfan, S. Rana, M.A. Hoque, S.E. Kabir, Assessment of the assembly behaviour and physicochemical parameters for the tetradecyltrimethylammonium bromide and promazine hydrochloride mixture: Impact of monohydroxy organic compounds, Colloid Polym. Sci. 302 (5) (2024) 721-734. [20] A. Dutta, M.T.R. Joy, S.M. Ali Ahsan, M.K. Gatasheh, D. Kumar, M. Abdul Rub, M. Anamul Hoque, M. Majibur Rahman, N. Hoda, D.M. Shafiqul Islam, Physico-chemical parameters for the assembly of moxifloxacin hydrochloride and cetyltrimethylammonium chloride mixture in aqueous and alcoholic media, Chin. J. Chem. Eng. 57 (2023) 280-289. [21] T. Hasan, J.M. Khan, S. Rana, M. Anamul Hoque, D. Kumar, M. Kumar Banjare, M. Majibur Rahman, M. Nurul Abser, Exploration of micellization and phase separation nature of surfactants in metformin hydrochloride + additives media: an experimental and DFT study, J. Mol. Liq. 413 (2024) 125961. [22] S. Mahbub, M.A. Rub, M. Anamul Hoque, M.A. Khan, D. Kumar, Micellization behavior of cationic and anionic surfactant mixtures at different temperatures: Effect of sodium carbonate and sodium phosphate salts, J. Phys. Org. Chem. 32 (9) (2019) e3967. [23] M.A. Hoque, M.M. Alam, M.R. Molla, S. Rana, M.A. Rub, M.A. Halim, M.A. Khan, A. Ahmed, Effect of salts and temperature on the interaction of levofloxacin hemihydrate drug with cetyltrimethylammonium bromide: Conductometric and molecular dynamics investigations, J. Mol. Liq. 244 (2017) 512-520. [24] K. Roebuck, A.Y. Tremblay, The self-assembly of twinned boehmite nanosheets into porous 3D structures in ethanol-water mixtures, Colloids Surf. A Physicochem. Eng. Aspects 495 (2016) 238-247. [25] F.L. Xu, C.H. Lu, Y.R. Ni, Z.Z. Xu, Synthesis by microwave irradiation process and controllable infrared absorptive property of oxyapatite-type samarium silicate, New Chem. Mater. 42 (4) (2014) 159-161, 169. [26] P. Bhattarai, T.P. Niraula, A. Bhattarai, Thermodynamic properties of cetyltrimethylammonium bromide in ethanol-water media with/without the presence of the divalent salt, J. Oleo Sci. 70 (3) (2021) 363-374. [27] N. Scholz, T. Behnke, U. Resch-Genger, Determination of the critical micelle concentration of neutral and ionic surfactants with fluorometry, conductometry, and surface tension-a method comparison, J. Fluoresc. 28 (1) (2018) 465-476. [28] K. Kuperkar, L. Abezgauz, K. Prasad, P. Bahadur, Formation and growth of micelles in dilute aqueous CTAB solutions in the presence of NaNO3 and NaClO3, J. Surfactants Deterg. 13 (3) (2010) 293-303. [29] Z. Ul Haq, N. Rehman, F. Ali, N. Mehmood Khan, H. Ullah, Effect of electrolyte (NaCl) and temperature on the mechanism of cetyl trimethylammonium bromide micelles, Sains Malays. 46 (5) (2017) 733-741. [30] A. Ali, U. Farooq, S. Uzair, R. Patel, Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium, J. Mol. Liq. 223 (2016) 589-602. [31] A. Ianiro, H. Wu, M.M.J. van Rijt, M.P. Vena, A.D.A. Keizer, A.C.C. Esteves, R. Tuinier, H. Friedrich, N.A.J.M. Sommerdijk, J.P. Patterson, Liquid-liquid phase separation during amphiphilic self-assembly, Nat. Chem. 11 (4) (2019) 320-328. [32] M.S. Alam, A. Mohammed Siddiq, V. Mythili, M. Priyadharshini, N. Kamely, A.B. Mandal, Effect of organic additives and temperature on the micellization of cationic surfactant cetyltrimethylammonium chloride: Evaluation of thermodynamics, J. Mol. Liq. 199 (2014) 511-517. [33] A. Pal, R. Punia, Mixed micellization behaviour of tri-substituted surface active ionic liquid and cationic surfactant in aqueous medium and salt solution: Experimental and theoretical study, J. Mol. Liq. 296 (2019) 111831. [34] P.K. Banipal, S. Arti, T.S. Banipal, Influence of polyhydroxy compounds on the micellization behaviour of cetyltrimethylammonium bromide: Conductance and microcalorimetric investigations, J. Mol. Liq. 223 (2016) 1204-1212. [35] M.A. Hoque, M.A. Khan, M.D. Hossain, Interaction of cefalexin monohydrate with cetyldimethylethylammonium bromide, J. Chem. Thermodyn. 60 (2013) 71-75. [36] S. Chauhan, K. Sharma, Effect of temperature and additives on the critical micelle concentration and thermodynamics of micelle formation of sodium dodecyl benzene sulfonate and dodecyltrimethylammonium bromide in aqueous solution: a conductometric study, J. Chem. Thermodyn. 71 (2014) 205-211. [37] S. Chauhan, M. Kaur, K. Kumar, M.S. Chauhan, Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium, J. Chem. Thermodyn. 78 (2014) 175-181. [38] M.A. Hoque, M.M. Alam, M.R. Molla, S. Rana, M.A. Rub, M.A. Halim, M.A. Khan, F. Akhtar, Interaction of cetyltrimethylammonium bromide with drug in aqueous/electrolyte solution: a combined conductometric and molecular dynamics method study, Chin. J. Chem. Eng. 26 (1) (2018) 159-167. [39] M.M. Alam, S. Rana, M.A. Rub, M.A. Hoque, S.E. Kabir, A.M. Asiri, Influence of various electrolytes on the interaction of cetyltrimethylammonium bromide with tetradecyltrimethylammonium bromide at different temperatures and compositions: Experimental and theoretical investigation, J. Mol. Liq. 278 (2019) 86-96. [40] A. Bhattarai, H. Wilczura-Wachnik, Interaction between morin and AOT reversed micelles: studies with UV-vis at 25°C, Int. J. Pharm. 461 (1-2) (2014) 14-21. [41] S.S. Berr, Solvent isotope effects on alkytrimethylammonium bromide micelles as a function of alkyl chain length, J. Phys. Chem. 91 (18) (1987) 4760-4765. [42] P. Warszynski, W. Barzyk, K. Lunkenheimer, H. Fruhner, Surface tension and surface potential of Na n-dodecyl sulfate at the air-solution interface: model and experiment, J. Phys. Chem. B 102 (52) (1998) 10948-10957. [43] S. Mahbub, M.R. Molla, M. Saha, I. Shahriar, M.A. Hoque, M.A. Halim, M.A. Rub, M.A. Khan, N. Azum, Conductometric and molecular dynamics studies of the aggregation behavior of sodium dodecyl sulfate (SDS) and cetyltrimethylammonium bromide (CTAB) in aqueous and electrolytes solution, J. Mol. Liq. 283 (2019) 263-275. [44] M.S. Alam, A.Z. Naqvi, Kabir-ud-Din, Surface and micellar properties of some amphiphilic drugs in the presence of additives, J. Chem. Eng. Data 52 (4) (2007) 1326-1331. [45] B. Kumar, D. Tikariha, K.K. Ghosh, Effects of electrolytes on micellar and surface properties of some monomeric surfactants, J. Dispers. Sci. Technol. 33 (2) (2012) 265-271. [46] M.A. James-Smith, D. Shekhawat, B.M. Moudgil, D.O. Shah, Determination of drug and fatty acid binding capacity to pluronic f127 in microemulsions, Langmuir 23 (4) (2007) 1640-1644. [47] J. Du, B.Y. Jiang, J.Q. Xie, X.C. Zeng, Effects of metal ions on the micellization of ionic surfactants, J. Dispersion Sci. Technol. 22 (6) (2001) 529-533. [48] X.K. Qu, L.Y. Zhu, L. Li, X.L. Wei, F. Liu, D.Z. Sun, Host-guest complexation of β-, γ-cyclodextrin with alkyl trimethyl ammonium bromides in aqueous solution, J. Solut. Chem. 36 (5) (2007) 643-650. [49] M.A. Rub, D. Kumar, N. Azum, F. Khan, A.M. Asiri, Study of the interaction between promazine hydrochloride and surfactant (conventional/gemini) mixtures at different temperatures, J. Solut. Chem. 43 (5) (2014) 930-949. [50] G. Para, E. Jarek, P. Warszynski, The Hofmeister series effect in adsorption of cationic surfactants: theoretical description and experimental results, Adv. Colloid Interface Sci. 122 (1-3) (2006) 39-55. [51] K. Lunkenheimer, D. Prescher, K. Geggel, Role of counterions in the adsorption and micellization behavior of 1: 1 ionic surfactants at fluid Interfaces─Demonstrated by the standard amphiphile system of alkali perfluoro- n-octanoates, Langmuir 38 (3) (2022) 891-902. [52] H. Kumar, A. Katal, Interaction of cationic surfactant cetyltrimethylammonium bromide (CTAB) with hydrophilic ionic liquid 1-butyl-3-methylimidazolium chloride [C4mim] [Cl] at different temperatures-Conductometric and FT-IR spectroscopic study, J. Mol. Liq. 266 (2018) 252-258. [53] L. Justyna, C. Jungnickel, M. Joskowska, J. Thoming, J. Hupka, Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions, J. Colloid Interface Sci. 336 (1) (2009) 111-116. [54] H. Kumar, C. Chadha, Conductometric and spectroscopic studies of cetyltrimethylammonium bromide in aqueous solutions of imidazolium based ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate, J. Mol. Liq. 211 (2015) 1018-1025. [55] Q. Zhang, Z.N. Gao, F. Xu, S.X. Tai, Effect of hydrocarbon structure of the headgroup on the thermodynamic properties of micellization of cationic gemini surfactants: an electrical conductivity study, J. Colloid Interface Sci. 371 (1) (2012) 73-81. [56] D.N. Li, Y.X. Zhang, Z.H. Ren, L.C. Le, J. Huang, B.B. Li, Q.H. Zhang, M.T. Yi, X.F. Quan, Y.X. Wang, B.R. Wang, Z.B. Qian, J.R. Wang, H. Tian, J. Yuan, N. Wang, Q.L. Long, X.M. Zhang, Molecular interaction for quasi-binary mixture of N-acyl amino sulfonate amphoteric surfactant from castor oil and stearyltrimethyl ammonium bromide, J. Mol. Liq. 339 (2021) 116813. [57] A. Pal, S. Chaudhary, Thermodynamic and aggregation behavior of aqueous tetradecyltrimethylammonium bromide in the presence of the hydrophobic ionic liquid 3-methyl-1-pentylimidazolium hexafluorophosphate, J. Mol. Liq. 207 (2015) 67-72. [58] V.B. Wagle, P.S. Kothari, V.G. Gaikar, Effect of temperature on aggregation behavior of aqueous solutions of sodium cumene sulfonate, J. Mol. Liq. 133 (1-3) (2007) 68-76. [59] R.K. Banjare, M.K. Banjare, S. Panda, Effect of acetonitrile on the colloidal behavior of conventional cationic surfactants: a combined conductivity, surface tension, fluorescence and FTIR study, J. Solut. Chem. 49 (1) (2020) 34-51. [60] H. Kumar, A. Katal, Thermodynamic analysis of micelles formation of anionic surfactant SDS in the presence of aqueous and aqueous solution of ionic liquid 1-butyl-3-methylimidazolium chloride, J. Phys. Org. Chem. 34 (7) (2021) e4199. [61] S. Chauhan, K. Negi, Insight of molecular interactions between short-chain tetraalkylammonium bromides and cetyltrimethylammonium bromide: a spectroscopic and thermodynamic approach, J. Surfactants Deterg. 26 (4) (2023) 505-515. [62] H. Kumar, N. Sharma, A. Katal, Aggregation behaviour of cationic (cetyltrimethylammonium bromide) and anionic (sodium dodecylsulphate) surfactants in aqueous solution of synthesized ionic liquid [1-pentyl-3-methylimidazolium bromide] -Conductivity and FT-IR spectroscopic studies, J. Mol. Liq. 258 (2018) 285-294. |
| [1] | Shan Feng, Maolan Li, Xudong Yu, Lin Wang, Qin Huang. Phase equilibria of ternary system RbCl - polyethylene glycol (PEG6000) - H2O at T = (288.2, 298.2, and 308.2) K: Measurement, correlation, and thermodynamic modeling [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 105-114. |
| [2] | Mengxia Liu, Tao Jiang, Jing Wen, Zibi Fu, Tangxia Yu, Changqing Li, Xinyu An. A technological process for extracting vanadium from leaching solution of sodium roasting of vanadium slag by manganese salt pretreatment [J]. Chinese Journal of Chemical Engineering, 2025, 81(5): 219-231. |
| [3] | Zongpeng Zou, Haoran Li, Yan Wang, Tao Zhang, Li Lv, Wenxiang Tang, Shengwei Tang. The phase behaviors of W/O microemulsion with Cu(Ac)2 -Zn(Ac)2 solution as aqueous phase [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 1-10. |
| [4] | Hadi Taheri Parsa, Hossein Iloukhani, Khatereh Khanlarzadeh. Experimental and computational insight in thermodynamic properties of binary mixtures of acetonitrile with trichloroethene or tetrachloroethene at different temperatures [J]. Chinese Journal of Chemical Engineering, 2025, 80(4): 328-340. |
| [5] | Aleksey K. Sagidullin, Sergey S. Skiba, Tatyana P. Adamova, Andrey Y. Manakov. Investigation of the formation processes of CO2 hydrate films on the interface of liquid carbon dioxide with humic acids solutions [J]. Chinese Journal of Chemical Engineering, 2025, 79(3): 53-61. |
| [6] | Hui Ming, Xudong Zhang, Xinping Huang, Lihua Cheng, Libo Zhang. Advances in the preparation process and mechanism study of high-purity anhydrous magnesium chloride from magnesium chloride hexahydrate [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 1-23. |
| [7] | Wei Cheng, Huilin Wen, Xiaoqiang Chen, Shaobin Zhang, Ziyi Yu. Fluorosurfactants and their application in droplet microreactors: An overview [J]. Chinese Journal of Chemical Engineering, 2025, 78(2): 314-326. |
| [8] | Yilin Wang, Shijie Li, Jianhui Qi, Hui Li, Kuihua Han, Jianli Zhao. Preparation and characterization of high performance super activated carbon based on coupled coal/sargassum precursors [J]. Chinese Journal of Chemical Engineering, 2025, 77(1): 81-92. |
| [9] | Haoyu Feng, Yaoqi Pan, Yijia Zhang, Zhuofan Zhang, Yunye Huang, Linxi Hou, Longqiang Xiao. Surface activity and cleaning performance of rosin-based quaternary ammonium salt type asymmetric Gemini surfactants [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 70-80. |
| [10] | Lifang Ge, Meizhen Gao, Xiaosheng Zhang, Jiang Wang, Qi Shi, Jinxiang Dong. Hydrophobic CHA-ZIFs with a junctional trap between cha and d6r cages for adsorption of 2,3-butanediol in aqueous solution [J]. Chinese Journal of Chemical Engineering, 2024, 73(9): 90-100. |
| [11] | Zhenguang Liu, Zexiang Ding, Yifeng Cao, Baojian Liu, Qiwei Yang, Zhiguo Zhang, Qilong Ren, Zongbi Bao. Temperature-dependent solubility of Rebaudioside A in methanol/ethanol and ethyl acetate mixtures: Experimental measurements and thermodynamic modeling [J]. Chinese Journal of Chemical Engineering, 2024, 72(8): 164-176. |
| [12] | Fuyu Zhuge, Nan Zhang, Haiying Tang, Qi Li, Niancu Chen, Xudong Yu. Solid-liquid phase equilibria in the aqueous system containing the chlorides of potassium, ammonium, and calcium at 298.2, 323.2, and 348.2 K [J]. Chinese Journal of Chemical Engineering, 2024, 76(12): 83-94. |
| [13] | R. Khan, A. Alameer, M. Afraz, A. Ahmad, R. Nawaz, Y. Khan. Exploring the enigmatic interplay between polymers and nanoparticles in a non-Newtonian viscoelastic fluid [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 161-169. |
| [14] | Zhao Lei, Qiannan Yue, Qin Pei, Ji Chen, Qiang Ling, Liu Lei, Gangli Zhu, Ping Cui. Exploring the metallurgical coke thermal properties in viewpoint of experiment and molecular simulation [J]. Chinese Journal of Chemical Engineering, 2024, 75(11): 253-265. |
| [15] | Jingzhou Guo, Yuanzuo Zou, Bo Shi, Yuan Pu, Jiexin Wang, Dan Wang, Jianfeng Chen. Experimental verification of nanonization enhanced solubility for poorly soluble optoelectronic molecules [J]. Chinese Journal of Chemical Engineering, 2023, 60(8): 8-15. |
| Viewed | ||||||
|
Full text |
|
|||||
|
Abstract |
|
|||||
京公网安备 11010102001993号 
