›› 2017, Vol. 25 ›› Issue (2): 223-231.doi: 10.1016/j.cjche.2016.08.003
• Energy, Resources and Environmental Technology • Previous Articles Next Articles
Shiguang Zhang, Lei Li, Youzhi Liu, Qiaoling Zhang
Received:
2016-07-06
Revised:
2016-08-07
Online:
2017-02-28
Published:
2017-03-14
Shiguang Zhang, Lei Li, Youzhi Liu, Qiaoling Zhang. TiO2-SA-Arg nanoparticles stabilized Pickering emulsion for photocatalytic degradation of nitrobenzene in a rotating annular reactor[J]. , 2017, 25(2): 223-231.
[1] Z.N. Norvill, A. Shilton, B. Guieysse, Emerging contaminant degradation and removal in algal wastewater treatment ponds:Identifying the research gaps, J. Hazard. Mater. 313(5) (2016) 291-309. [2] T.C. Li, B. Jiang, X. Feng, D.W. Wang, A.J. Yuan, X.G. Li, Purification of organic wastewater containing Cu2+ and Cr3+ by a combined process of micro electrolysis and biofilm, Chin. J. Chem. Eng. 11(2) (2003) 146-150. [3] F.Q. Chen, S.F. Wu, J.Z. Chen, S.X. Rong, COD removal efficiencies of some aromatic compounds in supercritical water oxidation, Chin. J. Chem. Eng. 9(2) (2001) 137-140. [4] X.H. Li, B.W. Zhao, K. Zhu, X.P. Hao, Removal of nitrophenols by adsorption using β-cyclodextrin modified zeolites, Chin. J. Chem. Eng. 19(6) (2011) 938-943. [5] H.W. Ma, Q.F. Fang, L.M. Wu, M.Q. Wei, Y.H. Zhang, The adsorption of phenol by lignite activated carbon, Chin. J. Chem. Eng. 19(3) (2011) 380-385. [6] M.F.F. Sze, G. Mckay, Adsorptive removal of para-chlorophenol using stratified tapered activated carbon column, Chin. J. Chem. Eng. 20(3) (2012) 444-454. [7] Y. Jiang, N.Q. Ren, X. Cai, D. Wu, Y.L. Qiao, S. Lin, Biodegradation of phenol and 4-chlorophenol by themutant strain CTM 2, Chin. J. Chem. Eng. 16(5) (2008) 796-800. [8] Y.Y. Lu, Y. Liu, B.W. Xia, W.Q. Zuo, Phenol oxidation by combined cavitationwater jet and hydrogen peroxide, Chin. J. Chem. Eng. 20(4) (2012) 760-767. [9] J.D. Vela, L.B. Stadler, K.J. Martin, L. Raskin, C.B. Bott, N.G. Love, Prospects for biological nitrogen removal from anaerobic effluents during mainstream wastewater treatment, Environ. Sci. Technol. Lett. 2(9) (2015) 234-244. [10] H. Yu, X.X. Zheng, Z.Y. Yin, T. Feng, B.B. Fang, K.S. Hou, Preparation of nitrogen-doped TiO2 nanoparticle catalyst and its catalytic activity under visible light, Chin. J. Chem. Eng. 15(6) (2007) 802-807. [11] C.B. Ratiu, C. Orha, C.Misca, C. Lazau, P. Sfirloaga, S. Olariu, Photocatalytical inactivation of Enterococcus faecalis from water using functional materials based on natural zeolite and titanium dioxide, Chin. J. Chem. Eng. 22(1) (2014) 38-43. [12] Q.S. Yang, Y.J. Liao, L.L.Mao, Kinetics of photocatalytic degradation of gaseous organic compounds on modified TiO2/AC composite photocatalyst, Chin. J. Chem. Eng. 20(3) (2012) 572-576. [13] H.F. Liu, S.F. Ji, Y.Y. Zheng, M. Li, H. Yang, Porous TiO2-coated magnetic core-shell nanocomposites:Preparation and enhanced photocatalytic activity, Chin. J. Chem. Eng. 20(3) (2012) 572-576. [14] L.W. Shan, J.B. Mi, L.M. Dong, Z.D. Han, B. Liu, Enhanced photocatalytic properties of silver oxide loaded bismuth vanadate, Chin. J. Chem. Eng. 22(8) (2014) 909-913. [15] D. Vione, Influence of electron acceptors on the kinetics ofmetoprolol photocatalytic degradation in TiO2 suspension. A combined experimental and theoretical study, RSC Adv. 5(2015) 54589-54604. [16] F. Yang, S.Y. Liu, J. Xu, Q. Lan, F. Wei, D.J. Sun, Pickering emulsions stabilized solely by layered double hydroxides particles:The effect of salt on emulsion formation and stability, J. Colloid Interface Sci. 302(1) (2006) 159-169. [17] T.Wu, H.T.Wang, B.X. Jing, F. Liu, P.C. Burns, C.Z. Na,Multi-body coalescence in Pickering emulsions, Nat. Commun. 6(2015) 5929. [18] Z.Y. Fan, A. Tay,M. Pera-Titus,W.J. Zhou, S. Benhabbari, X.S. Feng, G. Malcouronne, L. Bonneviot, F.D. Campo, L.M. Wang, J.M. Clacenset, Pickering interfacial catalysts for solvent-free biomass transformation:Physicochemical behavior of non-aqueous emulsions, J. Colloid Interface Sci. 427(8) (2014) 80-90. [19] D.E. Resasco, Carbon nanohybrids used as catalysts and emulsifiers for reactions in biphasic aqueous/organic systems, Chin. J. Catal. 35(6) (2014) 798-806. [20] W.Wu, S. Gao,W.X. Tu, J.F. Chen, P.Y. Zhang, Intensified photocatalytic degradation of nitrobenzene by Pickering emulsion of ZnO nanoparticles, Particuology 8(5) (2010) 453-457. [21] T. Nakato, H. Ueda, S. Hashimoto, R. Terao, M. Kameyama, E. Mouri, Pickering emulsions prepared by layered niobate K4Nb6O17 intercalated with organic cations and photocatalytic dye decomposition in the emulsions, ACS Appl. Mater. Interfaces 4(8) (2012) 4338-4347. [22] M.F. Nsib, A. Maayoufi, N. Moussa, N. Tarhouni, A. Massouri, A. Houas, Y. Chevalier, TiO2 modified by salicylic acid as a photocatalyst for the degradation of monochlorobenzene via Pickering emulsion way, J. Photochem. Photobiol. A 251(9) (2013) 10-17. [23] M. Nawaz, D. Kim,W. Miran, A. Kadam, J. Heo, S. Shin, J. Jang, S.R. Lim, D.S. Lee, Effect of toluene, an immiscible pollutant, on the photocatalytic degradation of azo dye, J. Ind. Eng. Chem. 30(2015) 10-13. [24] N. Mohaghegh, M. Tasviri, E. Rahimi, M.R. Gholami, A novel p-n junction Ag3PO4/BiPO4-based stabilized Pickering emulsion for highly efficient photocatalysis, RSC Adv. 5(17) (2015) 12944-12955. [25] W.Y. Zhai, G.P. Li, P. Yu, L.F. Yang, L.Q. Mao, Silver phosphate/carbon nanotubestabilized Pickering emulsion for highly efficient photocatalysis, J. Phys. Chem. C 117(29) (2013) 15183-15191. [26] P.K. Dutta, A.K. Ray, Experimental investigation of Taylor vortex photocatalytic reactor for water purification, Chem. Eng. Sci. 59(2004) 5249-5259. [27] M. Subramanian, A. Kannan, Photocatalytic degradation of phenol in a rotating annular reactor, Chem. Eng. Sci. 65(9) (2010) 2727-2740. [28] F.F. Lv, L.Q. Zheng, C.H. Tung, Phase behavior of the microemulsions and the stability of the chloramphenicol in the microemulsion-based ocular drug delivery system, Int. J. Pharm. 301(1-2) (2005) 237-246. [29] R. Aveyard, B.P. Binks, J.H. Clint, Emulsions stabilised solely by colloidal particles, Adv. Colloid Interf. Sci. 100-102(2) (2003) 503-546. [30] L. Li, Y.J. Feng, Y.Z. Liu, B. Wei, J.X. Guo, W.Z. Jiao, Z.H. Zhang, Q.L. Zhang, Titanium dioxide nanoparticles modified by salicylic acid and arginine:Structure, surface properties and photocatalytic decomposition of p-nitrophenol, Appl. Surf. Sci. 363(2016) 627-635. [31] W.Z. Jiao, J. Li, Y.Z. Liu, Q.L. Zhang, W.L. Liu, C.C. Xu, L. Guo, Dispersion performance of methanol-diesel emulsified fuel prepared by high gravity technology, China Pet. Process Petrocehm. 16(1) (2014) 27-34. [32] Q.L. Zhang, L. Li, Y.Z. Liu, B.Wei, J.X. Guo, Y.J. Feng, Grafting dynamics, structures and properties of Nano TiO2-SA photocatalytic materials, Acta Phys. -Chim. Sin. 31(6) (2015) 1510-1524 in Chinese. [33] L. Li, Q.L. Zhang, H.L. Fan, Y.Z. Liu, B. Wei, Y.J. Feng, Preparation of titanium dioxide particles modified by salicylic acid and arginine and its photocatalytic reaction on oil-water interface[J], J. Inorg. Mater. 31(4) (2016) 413-420(in Chinese). [34] H.Q. Jiang, Q.F. Wang, J.S. Li, Q.Y. Wang, Z.Y. Li, Sol-hydrothermal preparation of N-P-TiO2 nano-particles for photocatalytic degradation of 4-chlorophenol under sunlight irradiation, Acta Chim. Sin. 70(20) (2012) 377-381 in Chinese. [35] D.D. Dionysiou, A.A. Burbano, M.T. Suidan, Effect of oxygen in a thin-film rotating disk photocatalytic reactor, Environ. Sci. Technol. 36(17) (2002) 3834-3843. [36] H. Huang, K.C. Huang, D. Tsai, Light absorption measurement of a plasmonic photocatalyst in the circular plane waveguide of a photocatalytic dual light source spinning disk reactor, Opt. Rev. 20(2) (2013) 236-240. [37] J.G. Sczechowski, C.A. Koval, R.D. Noble, A Taylor vortex reactor for heterogeneous photocatalysis, Chem. Eng. Sci. 50(20) (1995) 3163-3173. [38] J. Zhang, F.T. Lu, S.B. Qi, Y.M. Zhao, K.P. Wang, B. Zhang, Y.Q. Feng, Influence of various electron-donating triarylamine groups in BODIPY sensitizers on the performance of dye-sensitized solar cells, Dyes Pigments 128(2016) 296-303. [39] J. Bolobajev, M. Trapido, A. Goi, Effect of iron ion on doxycycline photocatalytic and Fenton-based autocatatalytic decomposition, Chemosphere 153(2016) 220-226. [40] K. Mehrotra, G.S. Yablonsky, A.K. Ray, Kinetic studies of photocatalytic degradation in a TiO2 slurry system:Distinguishing working regimes and determining rate dependences, Ind. Eng. Chem. Res. 42(11) (2003) 2273-2281. [41] V. Vaiano, O. Sacco, D. Pisano, D. Sannino, P. Ciambelli, From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater, Chem. Eng. Sci. 137(2015) 152-160. [42] S.A. Bon, P.J. Colver, Pickering miniemulsion polymerization using Laponite clay as a stabilizer, Langmuir 23(16) (2007) 8316-8322. [43] H.Y. Huang, J.H. Zhou, H.L. Liu, Y.H. Zhou, Y.Y. Feng, Selective photoreduction of nitrobenzene to aniline on TiO2 nanoparticles modified with amino acid, J. Hazard. Mater. 178(1-3) (2010) 994-998. |
[1] | Chuanshuai Dong, Lin Lu, Tao Wen, Shaojie Zhang. Thermal performance assessment of self-rotating twisted tapes and Al2O3 nanoparticle in a circular pipe [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 77-86. |
[2] | Yanyong Li, Meng Ge, Jiameng Wang, Mengquan Guo, Fanji Liu, Mingxun Han, Yanhong Xu, Lihong Zhang. Dehydrogenation of isobutane to isobutene over a Pt-Cu bimetallic catalyst in the presence of LaAlO3 perovskite [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 203-211. |
[3] | Yu Shi, Liang Zhang, Jun Li, Qian Fu, Xun Zhu, Qiang Liao, Yongsheng Zhang. Effect of operating parameters on the performance of thermally regenerative ammonia-based battery for low-temperature waste heat recovery [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 335-340. |
[4] | Chunguang Song, Hongling Zhang, Yuming Dong, Lili Pei, Honghui Liu, Junsheng Jiang, Hongbin Xu. Investigation on the fabrication of lightweight aggregate with acid-leaching tailings of vanadium-bearing stone coal minerals and red mud [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 353-359. |
[5] | Zhiying Guo, Liping Ma, Quxiu Dai, Xinbo Yang, Ran Ao, Jie Yang, Jing Yang, Wengang Li. Modified corn-core powder for enhancing sludge dewaterability: Synthesis, characterization and sludge dewatering performance [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 368-377. |
[6] | Suransh Jain, Arvind Kumar Mungray. Comparative study of different hydro-dynamic flow in microbial fuel cell stacks [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 423-430. |
[7] | Tadele Daniel Mekuria, Lei Wang, Chunhong Zhang, Ming Yang, Qingtao Lv, Diaa Eldin Fouad. Synthesis and characterization of high strength polyimide/silicon nitride nanocomposites with enhanced thermal and hydrophobic properties [J]. Chinese Journal of Chemical Engineering, 2021, 32(4): 446-453. |
[8] | M. Ijaz Khan, Seifedine Kadry, Yuming Chu, M. Waqas. Modeling and numerical analysis of nanoliquid (titanium oxide, graphene oxide) flow viscous fluid with second order velocity slip and entropy generation [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 17-25. |
[9] | Kai Ge, Yuanhui Ji, Xiaohua Lu. A novel interfacial thermodynamic model for predicting solubility of nanoparticles coated by stabilizers [J]. Chinese Journal of Chemical Engineering, 2021, 29(3): 103-112. |
[10] | Kok Bing Tan, Daohua Sun, Jiale Huang, Tareque Odoom-Wubah, Qingbiao Li. State of arts on the bio-synthesis of noble metal nanoparticles and their biological application [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 272-290. |
[11] | Jing Zhao, Zhiguang Duan, Xiaoxuan Ma, Yannan Liu, Daidi Fan. Recent advances in systemic and local delivery of ginsenosides using nanoparticles and nanofibers [J]. Chinese Journal of Chemical Engineering, 2021, 29(2): 291-300. |
[12] | Zhen Chen, Zhongliang Ma, Jie Zheng, Xingguo Li, Etsuo Akiba, Hai-Wen Li. Perspectives and challenges of hydrogen storage in solid-state hydrides [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 1-12. |
[13] | Racheal Aigbe, Doga Kavaz. Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (II) ions from aqueous solution [J]. Chinese Journal of Chemical Engineering, 2021, 29(1): 92-102. |
[14] | Qun Liu, Yuan Liu, Zhihua Zhang, Xiaodong Wang, Jun Shen. Adsorption of cationic dyes from aqueous solution using hydrophilic silica aerogel via ambient pressure drying [J]. Chinese Journal of Chemical Engineering, 2020, 28(9): 2467-2473. |
[15] | Najeebullah Lashari, Tarek Ganat. Emerging applications of nanomaterials in chemical enhanced oil recovery: Progress and perspective [J]. Chinese Journal of Chemical Engineering, 2020, 28(8): 1995-2009. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||