1 Welton, T., “Room-temperature ionic liquids. Solvents for synthesis and catalysis”, Chem. Rev., 99, 2071-2084 (1999).2 Sherif, F.G., Shyu, L.J., Greco, C.C., “Linear alxylbenzene formation using low temperature ionic liquid”, US Pat., 5824832 (1998).3 Matsumoto, K., Hagiwara, R., Ito, Y., “Structural analysis of 1-ethyl-3-methyl-imidazolium bifluoride melt”, Nucl. Instrum. Methods Phys. Res., Sect. B., 199, 29-33 (2003).4 Fischer, T., Sethi, A., Welton, T., “Diels-Alder reaction in room-temperature ionic liquids”, Tetrahedron Lett., 40, 793-796 (1999).5 Lei, Z.G., Chen, B.H., Li, C.Y., Liu, H., “Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids”, Chem. Rev., 108, 1419-1455 (2008).6 Martins, M.A.P., Frizzo, C.P., Moreira, D.N., Zanatta, N., Bonacorso, H.G., “Ionic liquids in heterocyclic synthesis”, Chem. Rev., 108, 2015-2050 (2008).7 Tämm, K., Burk, P., “QSPR analysis for infinite dilution activity coefficients of organic compounds”, J. Mol. Model., 12, 417-421 (2006).8 Ge, M.L., Xiong, J.M., Wang, L.S., “Prediction of activity coefficients at infinite dilution of organic compouds in ionic liquid”, Chinese Science Bulletin, 54 (10), 1419-1423 (2009).9 Padovani, A.M., Suleiman, D., “Simple prediction of limiting activity coefficients of nonelectrolytes in water at 25 ℃”, AIChE J., 43 (12), 3271-3273 (1997).10 Lee, S.H., Lee, S.B., “The Hildebrand solubility parameters, cohesive energy densities and internal energies of 1-alkyl-3-methyl- imidazolium-based room temperature ionic liquids”, Chem. Commun., 27, 3469-3471 (2005).11 Mutelet, F., Butet, V., Jaubert, J.N., “Application of inverse gas chromatography and regular solution theory for characterization of ionic liquids”, Ind. Eng. Chem. Res., 44, 4120-4127 (2005).12 Heintz, A., Kulikov, D.V., Verevkin, S.P., “Thermodynamic properties of mixtures containing ionic liquids (2) Activity coefficients at infinite dilution of hydro-carbons and polar solutes in 1-methyl-3- ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide and in 1,2-dimethyl-3ethyl-imidazolium bis(trifluoromethyl-sulfonyl) amide using gas-liquid chromatography”, J. Chem. Eng. Data., 47 (4), 894-899 (2002).13 Hintz, A., Casás, L.M., Nesterov, I.A., “Thermodynamic properties of mixtures containing ionic liquids (5) Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-methyl-3-butyl -imidazolium bis(trifluoromethyl-sulfonyl) imide using gas-liquid chromatography”, J. Chem. Eng. Data., 50, 1510-1514 (2005).14 Diedenhofen, M., Eckert, F., Klamt, A., “Prediction of infinite dilution activity coefficients of organic compounds in ionic liquids using COSMO-RS”, J. Chem. Eng. Data., 48, 475-479 (2003).15 Heintz, A., Verevkin, S.P., “Thermodynamic properties of mixtures containing ionic liquids (8) Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-hexyl-3- methylimidazolium bis(trifluoro-methylsulfonyl) imide using gas-liquid chromatography”, J. Chem. Eng. Data., 51, 434-437 (2006).16 Heintz, A., Kulikov, D.V., Verevkin, S.P., “Thermodynamic properties of mixtures containing ionic liquids (1) activity coefficients at infinite dilution of alkanes, alkenes, and alkylbenzenes in 4-methyl-n-butylpyridinium tetrafluoroborate using gas-liquid chromatography”, J. Chem. Eng. Data., 46(6), 1526–1529(2001).17 Holbrey, J.D., Reichert, W.M., “Liquid clathrate formation in ionic liquid—Aromatic mixtures”, Chem. Commun., 4, 476-477 (2003).18 Kato, R., Gmehling, J., “Activity coefficients at infinite dilution of various solutes in the ionic liquids [MMIM]+[CH3SO4]-, [MMIM]+[CH3OC2H4SO4]-, [MMIM]+[(CH3)2PO4]-, [C5H5NC2H5]+ [(CF3SO2)2N]- and [C5H5NH]+[C2H5OC2H4-OSO3]-”, Fluid Phase Equilib., 226, 37-44 (2004).19 Letcher, T.M., Marciniak, A., Marciniak, M., Domanska, U., “Activity coefficients at infinite dilution measurements for organic solutes in the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)- imide using g.l.c. at T (298.15, 313.15, and 333.15)K”, J. Chem. Thermodynamics, 37, 1327-1331 (2005).20 Kato, R., Krummen, M., Gmehling, J., “Measurement and correlation of vapor-liquid equilibria and excess enthalpies of binary systems containing ionic liquids and hydrocarbons”, Fluid Phase Equilib., 224 (1), 47-54 (2004).21 Imrie, C., Elago, E.R.T., McCleland, C.W., “Esterification reactions in ionic liquids. The efficient synthesis of ferrocenyl esters in the ionic liquids [bmim][BF4] and [bmim][PF6]”, Green Chem., 4, 159-160 (2002).22 Izak, P., Mateusa, N.M.M., Afonsoa, C.A., “Enhanced esterification conversion in a room temperature ionic liquid by integrated water removal with pervaporation”, Sep. Purif. Technol., 41, 141-145 (2005).23 Letcher, T.M., Soko, B., Reddy, P., “Determination of activity coefficients at infinite dilution of solutes in the ionic liquid 1-hexyl- 3-methylimidazolium tetrafluoroborate using gas-liquid chromato- graphy at the temperatures 298.15K and 323.15K”, J. Chem. Eng. Data., 48, 1587-1590 (2003).24 Heintz, A., Verevkin, S. P., “Thermodynamic properties of mixtures containing ionic liquids (6) Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in 1-methyl-3-octyl- imidazolium tetrafluoroborate using gas-liquid chromatography”, J. Chem. Eng. Data., 50, 1515-1519 (2005).25 Heintz, A., Kulikov, D. V., Verevkin, S. P., “Thermodynamic properties of mixtures containing ionic liquids. Activity coefficients at infinite dilution of polar solutes in 4-methyl-N-butyl-pyridinium tetrafluoroborate using gas-liquid chromatography”, J. Chem. Thermodyn., 34 (8), 1341-1347 (2002).26 Wang, M.H., Wu, J.S., Wang, L.S., “Activity coefficients at infinite dilution of alkanes, alkenes, and alkyl benzenes in 1-propyl-2,3- dimethylimidazolium tetrafluoroborate using gas-liquid chromatography”, J. Chem. Eng. Data., 52 (4), 1488-1491 (2007).27 Song, C.E., Jung, D., Choung, S.Y., “Dramatic enhancement of catalytic activity in an ionic liquid: Highly practical Friedel-Crafts alkeny-lation of arenes with alkynes catalyzed by metal triflates”, Angew. Chem. Int. Ed., 43, 6183-6185 (2004).28 Koen, B., “Lanthanides and actinides in ionic liquids”, Chem. Rev., 107, 2592-2614 (2007).29 Zhao, Z.K., Qiao, W.H., Li, Z.S., “Friedel-Crafts alkylation of α-methyl -naphthalene in the presence of ionic liquids”, J. Mol. Catal. A., 222, 207-212 (2004).30 Wasserscheid, P., Sesing, M., Korth, W., “Hydrogensulfate and tetrakis (hydrogen-sulfato)borate ionic liquids: Synthesis and catalytic application in highly Brønsted-acidic systems for Friedel-Crafts alkylation”, Green Chem., 4, 134-138 (2002).31 Xiao, Y., Malhotra, S.V., “Brønsted acidic ionic liquids: The dependence on water of the Fischer esterification of acetic acid and ethanol”, J. Mol. Catal. A., 230, 129-133 (2005).32 Yoo, K., Namboodiri, V.V., Varma, R.S., “Ionic liquid-catalyzed alkylation of isobutane with 2-butene”, J. Catal., 222, 511-519 (2004).33 Song, C.E., Shim, W.H., Roh, E.J., Choi, J.H., “Scandium(Ⅲ) triflate immobilised in ionic liquids: A novel and recyclable catalytic system for Friedel-Crafts alkylation of aromatic compounds with alkenes”, Chem. Commun., 17, 1695-1696 (2000). |