[1] H. Yang, Z. Xu,M. Fan, R. Gupta, R.B. Slimane, A.E. Bland, I.Wright, Progress in carbon dioxide separation and capture: A review, J. Environ. Sci. 20 (1) (2008) 14-27. [2] M. Wang, A. Lawal, P. Stephenson, J. Sidders, C. Ramshaw, Post-combustion CO2 capture with chemical absorption: A state-of-the-art review, Chem. Eng. Res. Des. 89 (9) (2011) 1609-1624. [3] K. Simons, K. Nijmeijer, H. Mengers, W. Brilman, M. Wessling, Highly selective amino acid salt solutions as absorption liquid for CO2 capture in gas-liquid membrane, Chem. Sustain. 3 (8) (2010) 939-947. [4] S. Lee, H.J. Song, S. Maken, J.W. Park, Kinetics of CO2 absorption in aqueous sodium glycinate solutions, Ind. Eng. Chem. Res. 46 (5) (2007) 1578-1583. [5] P.S. Kumar, J.A. Hogendoorn, S.J. Timmer, P.H.M. Feron, G.F. Versteeg, Equilibrium solubility of CO2 in aqueous potassium taurate solutions: Part 2. Experimental VLE data and model, Ind. Eng. Chem. Res. 42 (12) (2003) 2841-2852. [6] B.D. Bhide, A. Voskericyan, Hydrogen production via steam reforming with CO2 capture, Chem. Eng. Trans. 19 (1998) 37-42. [7] E.S. Rubin, A.B. Rao, A technical, economic and environmental assessment of amine-based CO2 capture technology for power plant greenhouse gas control, Environ. Sci. Technol. 36 (20) (2002) 4467-4475. [8] A. Aboudheir, W. ElMoudir, Performance of formulated solvent in handling of enriched CO2 flue gas stream, Energy Procedia 1 (1) (2009) 195-204. [9] Recent Global Monthly Mean CO2, National Oceanographic and Atmospheric Administration: (NOAA), Silver springs, M.D., 2012 [10] Intergovernmental Panel on Climate Change, (IPCC) Report, IPCC, Geneva, 2007. [11] K. Simons,W.D.W.F. Brilman, H. Mengers, K. Nijmeijer, M. Wessling, Kinetics of CO2 absorption in aqueous sarcosine salt solutions: Influence of concentration, temperature, and CO2 loading, Ind. Eng. Chem. Res. 49 (20) (2010) 9693-9702. [12] A. Nuchitprasittichai, S. Cremaschi, Optimization of CO2 capture process with aqueous amines using response surface methodology, Comp. Chem. Eng. 35 (8) (2011) 1521-1531. [13] R. Steeneveldt, B. Berger, T.A. Torp, CO2 capture and storage: Closing the knowing-doing gap, Chem. Eng. Res. Des. 84 (9) (2006) 739-763. [14] S. Kadiwala, A.V. Rayer, A. Henni, High pressure solubility of carbon dioxide (CO2) in aqueous piperazine solutions, Fluid Phase Equilib. 292 (1-2) (2010) 20-28. [15] A.M. Shariff, G.Murshid, K.K. Lau,M.A. Bustam, F. Ahmed, Solubility of CO2 in aqueous solutions of 2-amino-2-methyl-1-propanol at high pressure, World Acad. Sci. Eng. Technol. 60 (2011) 1050-1053. [16] A. Hartono, U.E. Aronu, H.F. Svendsen, Liquid speciation study in amine amino acid salts for CO2 absorbent with 13C-NMR, Energy Procedia 4 (2011) 209-215. [17] A.F. Portugal, J.M. Sousa, F.D. Magalhães, A. Mendes, Solubility of carbon dioxide in aqueous solutions of amino acid salts, Chem. Eng. Sci. 64 (9) (2009) 1993-2002. [18] S. Ahn, H.J. Song, J.W. Park, J.H. Lee, I.Y. Lee, K.R. Jang, Characterization of metal corrosion by aqueous amino acid salts for the capture of CO2, Korean J. Chem. Eng. 27 (5) (2010) 1576-1580. [19] T. Kumagai, K. Tanaka, Y. Fujimura, T. Ono, F. Ito, T. Katz, O. Spuhl, A. Tan, P.W.J. Derks, HiPACT-Advanced CO2 capture technology for green natural gas exploration, Energy Procedia 4 (2011) 125-132. [20] J.V. Holst, G.F. Versteeg, D.W.F. Brilman, J.A. Hogendoorn, Kinetic study of CO2 with various amino acid salts in aqueous solution, Chem. Eng. Sci. 64 (1) (2009) 59-68. [21] M.E. Majchrowicz, D.W.F. Brilman,M.J. Groeneveld, Precipitation regime for selected amino acid salts for CO2 capture from flue gases, Energy Procedia 1 (2009) 979-984. [22] U.E. Aronu, A. Hartono, H.F. Svendsen, Kinetics of carbon dioxide absorption into aqueous amine amino acid salt: 3(methylamino)propylamine/sarcosine solution, Chem. Eng. Sci. 66 (23) (2011) 6109-6119. [23] S. Mazinani, A. Samsami, A. Jahanmiri, Solubility (at low partial pressure), density, viscosity, and corrosion rate of carbon dioxide in blend solutions ofmonoethanolamine (MEA) and sodium glycinate (SG), J. Chem. Eng. Data 56 (7) (2011) 3163-3168. [24] F. Harris, K.A. Kurnia, M.I.A. Mutalib, T. Murugesan, Solubilities of carbon dioxide and densities of aqueous sodiumglycinate solutions before and after CO2 absorption, J. Chem. Eng. Data 54 (1) (2009) 144-147. [25] S. Lee, S.I. Choi, S. Maken, H.J. Song, H.C. Shin, J.W. Park, K.R. Jang, J.H. Kim, Physical properties of aqueous sodium glycinate solution as absorbent for carbon dioxide removal, J. Chem. Eng. Data 50 (5) (2005) 1773-1776. [26] G. Murshid, A.M. Shariff, K.K. Lau, M.A. Bustam, Physical properties of aqueous solutions of piperazine and (2-amino-2-methyl-1-propanol+piperazine) from (298.15 to 333.15 K), J. Chem. Eng. Data 56 (5) (2011) 2660-2663. [27] S. Paul, A.K. Ghoshal, B. Mandal, Physicochemical properties of aqueous solutions of 2-amino-2-hydroxymethyl-1,3-propanediol, J. Chem. Eng. Data 54 (2) (2008) 444-447. [28] A. Muhammad, M.I. Mutalib, T. Murugesan, A. Shafeeq, Viscosity, refractive index, surface tension, and thermal decomposition of aqueous N-methyldiethanolamine solutions from (298.15 to 338.15) K, J. Chem. Eng. Data 53 (9) (2008) 2226-2229. [29] N.M. Yunus, M.I. Mutalib, Z. Man, M.A. Bustam, T. Murugesan, Thermophysical properties of 1-alkylpyridinum bis-(trifluoromethylsulfonyl)imide ionic liquids, J. Chem. Thermodyn. 42 (4) (2010) 491-495. [30] M. Roy, R. Sah, P. Pradhan, Densities, viscosities, sound speeds, refractive indices, and excess properties of binary mixtures of isoamyl alcohol with some alkoxyethanols, Int. J. Thermophys. 31 (2010) 316-326. [31] T.M. Aminabhavi, V.B. Pati, Density, viscosity, refractive index, and speed of sound in binary mixtures of ethenylbenzene with N,N-dimethylacetamide, tetrahydrofuran, N,N-dimethylformamide, 1,4-dioxane, dimethyl sulfoxide, chloroform, bromoform, and 1-chloronaphthalene in the temperature interval (298.15-308.15) K, J. Chem. Eng. Data 43 (4) (1998) 497-503. [32] Y.M. Tseng, A.R. Thompson, Densities and refractive indices of aqueous monoethanolamine, diethanolamine, triethanolamine, J. Chem. Eng. Data 9 (2) (1964) 264-267. [33] H.A. Al-Ghawas, D.P. Hagewiesche, G. Ruiz-Ibanez, O.C. Sandall, Physicochemical properties important for carbon dioxide absorption inaqueousmethyldiethanolamine, J. Chem. Eng. Data 34 (4) (1989) 385-391. [34] V. Campos, A.C. Marigliano Gomez, H.N. Solimo, Density, viscosity, refractive index, excessmolar volume, viscosity and refractive index deviations and their correlations for the (formamide+water) system. Isobaric (vapour+liquid) equilibrium at 2.5 kpa, J. Chem. Eng. Data 53 (1) (2007) 211-216. [35] A.Muhammad,M.I.Mutalib, T.Murugesan, A. Shafeeq, Thermophysical properties of aqueous piperazine and aqueous (N-methyldiethanolamine+piperazine) solutions at temperatures (298.15 to 338.15) K, J. Chem. Eng. Data 54 (8) (2008) 2317-2321. [36] J.G. Baragi, S. Maganur, V. Malode, S.J. Baragi, Excess molar volumes and refractive indices of binary liquid mixtures of acetyl acetone with n-Nonane, n-Decane and n-Dodecane at (298.15, 303.15, and 308.15) K, J. Mol. Liq. 178 (2013) (175-17). [37] M.S. Shaikh, A.M. Shariff, M.A. Bustam, G. Murshid, Physical properties of aqueous blends of sodium glycinate (SG) and piperazine (PZ) as a solvent for CO2 capture, J. Chem. Eng. Data 58 (3) (2013) 634-638. [38] H.J. Song,M.G. Lee,H. Kim,A.Gaur, J.W. Park,Density, viscosity, heat capacity, surface tension, and solubility of CO2 in aqueous solutions of potassium serinate, J. Chem. Eng. Data 56 (4) (2011) 1371-1377. |