[1] K. Grjotheim, B.J. Welch, Aluminium Smelter Technology, Aluminium Verlag, Düsseldorf, 1980.[2] K. Grjotheim, C. Krohn, K. Matiasovsky, J. Thonstad, Aluminium Electrolysis—Fundamentals of the Hall-Heroult Process, 2nd. ed. Aluminium Verlag, Düsseldorf, 1982.[3] Adler, H., “Process for the electrolysis of a molten charge using inconsumable bipolar electrodes”, U.S. Pat., 3930967(1976); “Electrolysis of a molten charge using incomsumable electrodes”, U.S. Pat., 3960678(1976); “Process for the electrolysis of a molten charge using inconsumable anodes”, U.S. Pat., 3974046(1976).[4] A.M. Popescu, V. Constantin, Studiul realiz?rii unui contact pe un electrod ceramic pe baz? de SnO2, Rev. Chim. Buchr. 48 (8) (1997) 691-692.[5] S. Zuca, A.M. Popescu, N. Ene, V. Constantin, Studiul anozilor iner?i pe baz? de SnO2 în topiturile criolit-alumin?, Rev. Chim. Buchr. 50 (1) (1999) 42-47.[6] A.M. Popescu, S. Mihaiu, S. Zuca, Microstructure and electrochemical behaviour of some SnO2-based inert electrodes in aluminium electrolysis, Z. Naturforsch. 57a (2002) 71-75.[7] S.Mihaiu, S. Zuca, A.M. Popescu, Gh. Aldica,M. Zaharescu, Electrical behaviour of the sintered SnO2-based ceramics, Key Eng. Mater. 206-213 (2002) 1481-1484.[8] A.M. Popescu, V. Constantin, Tensiunea de descompunere în s?ruri topite-I. Al2O3 în topituri criolitice cu anod inert pe baz? de SnO2, Rev. Chim. Buchr. 56 (8) (2005) 834-837.[9] A.M. Popescu, S. Mihaiu, M. Zaharescu, V. Constantin, Processing of oxide advanced ceramics as inert electrodes, J. Optoelectron. Adv. Mater. 9 (7) (2007) 2227-2231.[10] A.M. Popescu, V. Constantin, Sintering and behaviour of tin dioxide-based electrodes, Rev. Chim. Buchr. 61 (3) (2010) 249-253.[11] A.M. Popescu, G. Nipan, S. Mihaiu, V. Constantin, M. Olteanu, N. Shumilkin, Structure and behaviour of ceramic materials based on SnO2 used as inert anodes in electrowining processes, Rev. Roum. Chim. 55 (5) (2010) 319-328.[12] M. Keinbourg, J.P. Cuny, AluminiumPechiney 180 kA prebake pot-fromprototype to potline, in: R.E. Miller, P.A. Warrendale (Eds.),Light Metals 1982, TMS-AIME, 1982, pp. 449-460.[13] J. Thonstad, S. Rolseth, On the cathodic overvoltage on aluminum in NaF-AlF3- Al2O3. Melts-II, Electrochim. Acta 23 (3) (1978) 233-241.[14] S. Rolseth, T. Muftuoglu, A. Solheim, J. Thonstad, Current efficiency at short anode- cathode distance in aluminium electrolysis, in: R.E. Miller, P.A. Warrendale (Eds.),Light Metals 1986, TMS-AIME, 1986, pp. 517-523.[15] K. Billehaug, H.A. Øye, Inert anodes for aluminium electrolysis in Hall-Heroult cell. (I), Aluminium 57 (2) (1981) 146-150 (and (II), ibid, 57 (2), 228-231 (1981)).[16] C.J.McMinn, A review of RHMcathode development, in: E. Cutshall, P.A.Warrendale (Eds.), Light Metals 1992, TMS-AIME, 1992, pp. 419-425.[17] H. Zhu, D.R. Sadoway, An electroanalytical study of electrode reaction on carbon anodes during electrolytic production of aluminum, in: R.D. Peterson, P.A.Warrendale (Eds.), Light Metals 2000, TMS-AIME, 2000, pp. 257-263.[18] H. Kvande, Inert electrodes in aluminium electrolysis cell, in: C.E. Eckert, P.A. Warrendale (Eds.), Light Metals 1999, TMS-AIME, 1999, pp. 369-376.[19] F.M. Kimmerle, G. Potvin, J.T. Pisano, Measured versus calculated reduction of the PFC emissions from prebaked Hall-Héroult Cells, in: B.J. Welch, P.A. Warrendale (Eds.), Light Metals 1998, TMS-AIME, 1998, pp. 165-175.[20] J. Caissy, G. Dufour, P. Lapointe, On the road to 325 kA, in: B.Welch, P.A.Warrendale (Eds.), Light Metals 1998, TMS-AIME, 1998, pp. 215-219.[21] A.M. Popescu, V. Constantin, The dependence of current efficiency on the operating parameters in aluminium electrolysis cell with SnO2-based inert anodes, Rev. Roum. Chim. 43 (9) (1998) 793-798.[22] A.M. Popescu, Influence of electrolyte composition on current efficiency in a laboratori aluminium cell with oxygen inert SnO2-based anodes, Rev. Roum. Chim. 43 (10) (1998) 903-908.[23] A.M. Popescu, V. Constantin, The influence of interelectrode distance on the current efficiency in aluminium electrolysis with inert anodes, Bulg. Chem. Commun. 33 (1) (2000) 140-149.[24] A.M. Popescu, Current efficiency obtained with SnO2-based inert anodes in laboratory aluminium cell, Z. Naturforsch. 56a (2001) 735-738.[25] S. Zuca, M. Terzi, M. Zaharescu, K. Matiasovsky, Contribution to the study of SnO2- based ceramics, J. Mater. Sci. 26 (6) (1991) 1673-1676.[26] S. Mihaiu, S. Zuca, A.M. Popescu, G. Aldica, M. Zaharescu, Electrical behaviour of the sintered SnO2-based ceramics, EuroCeram. VII (Pt.1-3) (2002) 767-770 (206-2).[27] P. Fellner, Z. Lubyova, Equilibrium between aluminum and the cryolitemelt containing lithium-fluoride, Chem. Pap. 40 (2) (1986) 145-151.[28] R.P. Pawlek, Inert anodes for the primary aluminium industry: an update, in: W.R. Hale, P.A. Warrendale (Eds.), Light Metals 1996, TMS-AIME, 1996, pp. 243-248.[29] H. Xiao, R. Hovland, S. Rolseth, J. Thonstad, Studies on the corrosion and the behavior of inert anodes in aluminum electrolysis, Metall. Mater. Trans. B 27 (2) (1996) 185-193.[30] N. Jarrett,W.B. Frank, R. Keller, Advances in the smelting of aluminum, in: J.K. Tien, J.F. Elliott, P.A.Warrendale (Eds.), Metallurgical Treatise, TMS-AIME, 1981, pp. 137-157.[31] A.M. Popescu, S. Zuca, S. Mihaiu, V. Constantin, Studies on the current efficiency, corrosion and structural changes in SnO2-based inert anodes in aluminium electrolysis, in: R.W. Berg, H.A. Hjuler (Eds.), Progress in Molten Salts 1, Prof. Bjerrum, N.J., Special Volume, Elsevier, Amsterdam, 2000, pp. 417-421.[32] V. Constantin, A.M. Popescu, Tensiunea de descompunere în s?ruri topite-II. Al2O3 în topituri criolitice cu anozi de c?rbune, Rev. Chim. Buchr. 56 (12) (2005) 1246-1248. |