[1] C.W. Zhao, X.L. Zhuang, P. He, C.S. Xiao, C.L. He, J.R. Sun, X.S. Chen, X.B. Jing, Synthesis of biodegradable thermo-and pH-responsive hydrogels for controlled drug release, Polymer 50 (18) (2009) 4308-4316. [2] Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery, Adv. Drug Deliv. Rev. 64 (2012) 49-60 (Supplement). [3] S. Binauld,M.H. Stenzel, Acid-degradable polymers for drug delivery: A decade of innovation, Chem. Commun. 49 (21) (2013) 2082-2102. [4] G. Gerlach,M. Guenther, J. Sorber, G. Suchaneck, K.F. Arndt, A. Richter, Chemical and pH sensors based on the swelling behavior of hydrogels, Sensors Actuators B Chem. 111-112 (2005) 555-561. [5] M.B. Charati, I. Lee, K.C. Hribar, J.A. Burdick, Light-sensitive polypeptide hydrogel and nanorod composites, Small 6 (15) (2010) 1608-1611. [6] S.Z. Fu, P.Y. Ni, B.Y.Wang, B.Y. Chu, L. Zheng, F. Luo, J.C. Luo, Z.Y. Qian, Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration, Biomaterials 33 (19) (2012) 4801-4809. [7] Z.F. Cui, Y.X. GUAN, S.J. YAO, A temperature-sensitive hydrogel refolding system: Preparation of poly (N-isopropyl acrylamide) and its application in lysozyme refolding, Chin. J. Chem. Eng. 12 (4) (2004) 56-560. [8] S. Wu, J. Dzubiella, J. Kaiser, M. Drechsler, X.H. Guo, M. Ballauff, Y. Lu, Thermosensitive Au-PNIPA yolk-shell nanoparticles with tunable selectivity for catalysis, Angew. Chem. Int. Ed. 51 (9) (2012) 2229-2233. [9] V. Ramtenki, V.D. Anumon, M.V. Badiger, B.L.V. Prasad, Gold nanoparticle embedded hydrogelmatrices as catalysts: better dispersibility of nanoparticles in the gelmatrix upon addition of N-bromosuccinimide leading to increased catalytic efficiency, Colloids Surf. A Physicochem. Eng. Asp. 414 (2012) 296-301. [10] M.E. Harmon, D. Kuckling, P. Pareek, C.W. Frank, Photo-cross-linable PNIPAAm copolymers. 4. Effects of copolymerization and cross-linking on the volume-phase transition in constrained hydrogel layers, Langmuir 19 (2003) 10947-10956. [11] I. Berndt, J.S.F.J. Pedersen, W. Richtering, Temperature-sensitive core-shell microgel particles with dense shell, Angew. Chem. 118 (2006) 1769-1773. [12] I. Berndt, C. Popescu, F.J. Wortmann, W. Richtering, Mechanics versus thermodynamics: swelling in multiple-temperature-sensitive core-shell microgels, Angew. Chem. Int. Ed. 45 (2006) 1081-1085. [13] A. Suzuki, K. Sanda, Y. Omori, Phase transition in strongly stretched polymer gels, J. Chem. Phys. 107 (13) (1997) 5179-5185. [14] G. Bai, A. Suzuki, Phase separation of weakly ionized polymer gels during shrinking phase transition, J. Chem. Phys. 111 (22) (1999) 10338-10346. [15] P.J. Flory, J. Rehner, Statistical mechanics of cross-linked polymer networks I. Rubberlike elasticity, J. Chem. Phys. 11 (1943) 512-520. [16] P.J. Flory, J. Rehner, Statisticalmechanics of cross-linked polymer networks. II. Swelling, J. Chem. Phys. 1943 (11) (1943) 521-526. [17] M. Quesada-Perez, J.A. Maroto-Centeno, J. Forcada, R. Hidalgo-Alvarez, Gel swelling theories: the classical formalism and recent approaches, Soft Matter 7 (22) (2011) 10536-10547. [18] Y.M. Huang, X.Z. Jin, H.L. Liu, Y. Hu, A molecular thermodynamic model for the swelling of thermo-sensitive hydrogels, Fluid Phase Equilib. 263 (1) (2008) 96-101. [19] J.Y. Yang, Q.L. Yan, H.L. Liu, Y. Hu, A molecular thermodynamicmodel for compressible lattice polymers, Polymer 47 (14) (2006) 5187-5195. [20] J.Y. Yang, C.J. Peng, H.L. Liu, Y. Hu, Liquid-liquid equilibria of polymer solutions with oriented interactions, Fluid Phase Equilib. 249 (2006) 192-197. [21] D.Y. Zhi, Y.M. Huang, X. Han, H.L. Liu, Y. Hu, A molecular thermodynamic model for temperature-and solvent-sensitive hydrogels, application to the swelling behavior of PNIPAm hydrogels in ethanol/water mixtures, Chem. Eng. Sci. 65 (10) (2010) 3223-3230. [22] D.Y. Zhi, Y.M. Huang, S.H. Xu, H.L. Liu, Y. Hu, Molecular thermodynamic model for swelling behavior and volume phase transition of multi-responsive hydrogels, Fluid Phase Equilib. 312 (2011) 106-115. [23] D.Y. Zhi, C. Lian, S.H. Xu, Y.M. Huang, H.L. Liu, Molecular thermodynamic model for swelling and volume phase transition behavior of random copolymer gels, CIESC J. 64 (1) (2013) 268-274 (in Chinese). [24] C. Lian, D.Y. Zhi, S.H. Xu, H.L. Liu, Y. Hu, A lattice model for thermally-sensitive core-shell hydrogels, J. Colloid Interface Sci. 406 (2013) 148-153. [25] S.Q. Cai, Z.G. Suo, Mechanics and chemical thermodynamics of phase transition in temperature-sensitive hydrogels, J. Mech. Phys. Solids 59 (2011) 2259-2278. [26] W. Hong, Z.S. Liu, Z.G. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical load, Int. J. Solids Struct. 46 (17) (2009) 3282-3289. [27] Z.S. Liu,W. Hong, Z.G. Suo, S. Swaddiwudhipong, Y.W. Zhang, Modeling and simulation of buckling of polymeric membrane thin film gel, Comput. Mater. Sci. 49 (2010) S60-S64. [28] V.V. Yashin, A.C. Balazs, Pattern formation and shape changes in self-oscillating polymer gels, Science 314 (5800) (2006) 798-801. [29] I.C. Chen, O. Kuksenok, V.V. Yashin, A.C. Balazs, K.J. Van-Vliet, Mechanical resuscitation of chemical oscillations in Belousov-Zhabotinsky gels, Adv. Funct. Mater. 22 (12) (2012) 2535-2541. [30] C. Lian, L. Wang, X.Q. Chen, X. Han, S.L. Zhao, H.L. Liu, Y. Hu, Modeling swelling behavior of thermoresponsive polymer brush with lattice density functional theory, Langmuir 30 (14) (2014) 4040-4048. [31] C. Lian, X.Q. Chen, S.L. Zhao, W.J. Lv, X. Han, H.L. Wang, H.L. Liu, Substrate effect on the phase behavior of polymer brushes with lattice density functional theory, Macromol. Theory Simul. 23 (9) (2014) 575-582. [32] I. Berndt,W. Richtering, Doubly temperature sensitive core-shell microgels, Macromolecules 36 (23) (2003) 8780-8785. [33] A. Vidyasagar, J. Majewski, R. Toomey, Temperature induced volume-phase transition in surface-tethered poly(N-isopropylacrylamide) networks, Macromolecules 41 (2008) 919-924. |