[1] T.C. Hung, T.Y. Shai, S.K. Wang, A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat, Energy 22 (7) (1997) 661-667. [2] V. Maizza, A. Maizza, Unconventional working fluids in organic Rankine-cycles for waste energy recovery systems, Appl. Therm. Eng. 21 (3) (2001) 381-390. [3] U. Drescher, D. Bruggemann, Fluid selection for the organic Rankine cycle (ORC) in biomass power and heat plants, Appl. Therm. Eng. 27 (1) (2007) 223-228. [4] Q. Liu, Y.Y. Duan, Z. Yang, Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids, Energy 63 (2013) 123-132. [5] G.Q. Qiu, Selection ofworking fluids formicro-CHP systemswith ORC, Renew. Energy 48 (2012) 565-570. [6] D. Mikielewicz, J. Mikielewicz, A thermodynamic criterion for selection of working fluid for subcritical and supercritical domestic micro CHP, Appl. Therm. Eng. 30 (2010) 2357-2362. [7] G. Angelino, P.C. Di Paliano, Multicomponent working fluids for organic Rankine cycles (ORCs), Energy 23 (6) (1998) 449-463. [8] H. Chen, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power, Energy 36 (1) (2011) 549-555. [9] F. Heberle, M. Preissinger, D. Brüggemann, Zeotropic mixtures as working fluids in organic Rankine cycles for low-enthalpy geothermal resources, Renew. Energy 37 (1) (2012) 364-370. [10] Q. Liu, Y.Y. Duan, Z. Yang, Effect of condensation temperature glide on the performance of organic Rankine cycles with zeotropic mixture working fluids, Appl. Energy 115 (2014) 394-404. [11] X.H. Xu, Y.Y. Duan, Z. Yang, Prediction of the critical properties of binary alkanol + alkane mixtures using a crossover CPA equation of state, Fluid Phase Equilib. 309 (2011) 168-173. [12] H. Karimi, F. Yousefi, M.M. Papari, Prediction of volumetric properties (p-v-T) of natural gas mixtures using extended Tao-Mason equation of state, Chin. J. Chem. Eng. 19 (3) (2011) 496-503. [13] A.M. Delgado-Torres, L. Garcia-Rodriguez, Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination, Desalination 216 (1-3) (2007) 306-313. [14] E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties—REFPROP, Version 9.0, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg, 2010. [15] J.M. Calm, G.C. Hourahan, Refrigerant data update, Heat. Piping Air Cond. Eng. 79 (1) (2007) 50-64. [16] B.F. Tchanche, G. Papadakis, G. Lambrinos, A. Frangoudakis, Fluid selection for a low-temperature solar organic Rankine cycle, Appl. Therm. Eng. 29 (11-12) (2009) 2468-2476. [17] I.H. Aljundi, Effect of dry hydrocarbons and critical point temperature on the efficiencies of organic Rankine cycle, Renew. Energy 36 (4) (2011) 1196-1202. [18] L. Garcia-Rodriguez, A.M. Delgado-Torres, Solar-powered Rankine cycles for fresh water production, Desalination 212 (1-3) (2007) 319-327. [19] R. Rayegan, Y.X. Tao, A procedure to select working fluids for solar organic Rankine cycles (ORCs), Renew. Energy 36 (2) (2011) 659-670. [20] D. Bucker, W. Wagner, Reference equations of state for the thermodynamic properties of fluid phase n-butane and isobutane, J. Phys. Chem. Ref. Data 35 (2) (2006) 929-1019. [21] R. Span, W. Wagner, Equations of state for technical applications. II. Results for nonpolar fluids, Int. J. Thermophys. 24 (1) (2003) 41-109. [22] E.W. Lemmon, R. Span, Short fundamental equations of state for 20 industrial fluids, J. Chem. Eng. Data 51 (3) (2006) 785-850. [23] H. Saffari, A. Zahedi, A new alpha-function for the Peng-Robinson equation of state: application to natural gas, Chin. J. Chem. Eng. 21 (10) (2013) 1155-1161. [24] X.H. Xu, Y.Y. Duan, Crossover CPA equation of state for associating fluids, Fluid Phase Equilib. 290 (2010) 148-152. [25] J.J. Martin, Equations of state—Applied thermodynamics symposium, Ind. Eng. Chem. 59 (12) (1967) 34-52. [26] A. Peneloux, E. Rauzy, R. Freze, A consistent correction for Redlich-Kwong-Soave volumes, Fluid Phase Equilib. 8 (1) (1982) 7-23. [27] P. Watson, M. Cascella, D. May, S. Salerno, D. Tassios, Prediction of vapor-pressures and saturated molar volumes with a simple cubic equation of state. 2. The van der Waals-711 EOS, Fluid Phase Equilib. 27 (1986) 35-52. [28] H. Lin, Y.Y. Duan, Empirical correction to the Peng-Robinson equation of state for the saturated region, Fluid Phase Equilib. 233 (2) (2005) 194-203. [29] H. Lin, Y.Y. Duan, T. Zhang, Z.M. Huang, Volumetric property improvement for the Soave-Redlich-Kwong equation of state, Ind. Eng. Chem. Res. 45 (5) (2006) 1829-1839. [30] W.R. Ji, D.A. Lempe, Density improvement of the SRK equation of state, Fluid Phase Equilib. 130 (1-2) (1997) 49-63. [31] O. Pfohl, Evaluation of an improved volume translation for the prediction of hydrocarbon volumetric properties, Fluid Phase Equilib. 163 (1) (1999) 157-159. [32] L.V. Yelash, T. Kraska, Volume-translated equations of state: empirical approach and physical relevance, AICHE J. 49 (6) (2003) 1569-1579. [33] A.Z. Patashinskii, V.L. Pokrovskii, Fluctuation Theory of Phase Transitions, Pergamon Press, New York, 1979. [34] S.B. Kiselev, J.F. Ely, Generalized crossover description of the thermodynamic and transport properties in pure fluids, Fluid Phase Equilib. 222 (2004) 149-159. [35] M. Dicko, C. Coquelet, Application of a new crossover treatment to a generalized cubic equation of state, Fluid Phase Equilib. 302 (1-2) (2011) 241-248. [36] S.B. Kiselev, J.F. Ely, Generalized crossover description of the thermodynamic and transport properties in pure fluids II. Revision and modifications, Fluid Phase Equilib. 252 (1-2) (2007) 57-65. [37] S.B. Kiselev, J.F. Ely, Crossover SAFT equation of state: Application for normal alkanes, Ind. Eng. Chem. Res. 38 (12) (1999) 4993-5004. [38] Z.Q. Hu, J.C. Yang, Y.G. Li, Crossover SAFT-BACK equation of state for pure CO2 and H2O, Fluid Phase Equilib. 205 (1) (2003) 25-36. [39] S.B. Kiselev, J.F. Ely, HRX-SAFT equation of state for fluid mixtures: New analytical formulation, J. Phys. Chem. C 111 (43) (2007) 15969-15975. [40] X.H. Xu, Y.Y. Duan, Z. Yang, Crossover volume translation Soave-Redlich-Kwong equation of state for fluids, Ind. Eng. Chem. Res. 51 (18) (2012) 6580-6585. [41] G. Soave, Equilibrium constants from a modified Redlich-Kwong equation of state, Chem. Eng. Sci. 27 (6) (1972) 1197-1203. [42] J.V. Sengers, J.G. Shanks, Experimental critical-exponent values for fluids, J. Stat. Phys. 137 (5-6) (2009) 857-877. [43] M.E. Fisher, S.Y. Zinn, P.J. Upton, Trigonometric models for scaling behavior near criticality, Phys. Rev. B 59 (22) (1999) 14533-14545. [44] S.B. Kiselev, J.F. Ely, A new analytical formulation for the generalized corresponding states model for thermodynamic and surface properties in pure fluids, Chem. Eng. Sci. 61 (15) (2006) 5107-5113. [45] H. Miyamoto, M. Uematsu, Measurements of vapour pressures and saturated-liquid densities for n-butane at T = (280 to 424) K, J. Chem. Thermodyn. 39 (5) (2007) 827-832. [46] S. Glos, R. Kleinrahm,W.Wagner, Measurement of the (p, ρ, T) relation of propane, propylene, n-butane, and isobutane in the temperature range from (95 to 340) K at pressures up to 12 MPa using an accurate two-sinker densimeter, J. Chem. Thermodyn. 36 (12) (2004) 1037-1059. [47] W.B. Kay, Pressure-volume-temperature relations for n-butane, Ind. Eng. Chem. 32 (1940) 358-360. [48] B.H. Sage, W.N. Lacey, Phase equilibrium in hydrocarbon systems—thermodynamic properties of isobutane, Ind. Eng. Chem. 30 (1938) 673-681. [49] H.Miyamoto, T. Koshi, M. Uematsu, Measurements of saturated-liquid densities for isobutane at T = (280 to 407) K, J. Chem. Thermodyn. 40 (8) (2008) 1222-1225. [50] B.H. Sage, H.H. Reamer, R.H. Olds, W.N. Lacey, Phase equilibria in hydrocarbon systems-Volumetric and phase behaviour of methane-n-pentane system, Ind. Eng. Chem. 34 (1942) 1108-1117. [51] A.G. Osborn, D.R. Douslin, Vapor-pressure relations for 15 hydrocarbons, J. Chem. Eng. Data 19 (2) (1974) 114-117. [52] H. Kratzke, S. Muller, M. Bohn, R. Kohlen, Thermodynamic properties of saturated and compressed liquid normal-pentane, J. Chem. Thermodyn. 17 (3) (1985) 283-294. [53] H.N.M. de Oliveira, F.W.B. Lopes, A.A.D. Neto, O. Chiavone, Vapor-liquid equilibria for pentane plus dodecane and heptane plus dodecane at low pressures, J. Chem. Eng. Data 47 (6) (2002) 1384-1387. [54] J.A. Beattie, S.W. Levine, D.R. Douslin, The vapor pressure and critical constants of normal pentane, J. Am. Chem. Soc. 73 (9) (1951) 4431-4432. [55] E.W. Arnold, D.W. Liou, J.W. Eldridge, Thermodynamic properties of isopentane, J. Chem. Eng. Data 10 (2) (1965) 88-92. [56] H. Lesche, D. Klemp, B. Nickel, Density and viscosity of isopentane from 115 K to 293 K, Z. Phys. Chem. Neue Folge 141 (1984) 239-249. [57] R.H. Olds, H.H. Reamer, B.H. Sage, W.N. Lacey, Phase equilibria in hydrocarbon systems—volumetric behavior of n-butane, Ind. Eng. Chem. 36 (1944) 282-284. [58] J.A. Beattie, S. Marple, D.G. Edwards, The compressibility of and an equation of state for gaseous isobutene, J. Chem. Phys. 18 (1) (1950) 127-128. [59] M. Waxman, J.S. Gallagher, Thermodynamic properties of isobutane for temperatures from 250 to 600 K and pressures from 0.1 to 40 MPa, J. Chem. Eng. Data 28 (2) (1983) 224-241. [60] DIPPR thermophysical properties laboratory 350CB, DIPPR Project 801 Evaluated Process Design Data, Brigham Young University, Provo, UT 84602, 2010. |