[1] N. Pal, A. Mandal, Oil recovery mechanisms of Pickering nanoemulsions stabilized by surfactant-polymer-nanoparticle assemblies:A versatile surface energies' approach, Fuel 276(2020) 118138. [2] G. Sang, Y. Pi, M. Bao, Y. Li, J. Lu, Biodegradation for hydrolyzed polyacrylamide in the anaerobic baffled reactor combined aeration tank, Ecol. Eng. 84(2015) 121-127. [3] B. Shaker Shiran, A. Skauge, Enhanced oil recovery (EOR) by combined low salinity water/polymer flooding, Energy Fuels 27(2013) 1223-1235. [4] Z. Ye, G. Gou, S. Gou, W. Jiang, T. Liu, Synthesis and characterization of a watersoluble sulfonates copolymer of acrylamide and N-allylbenzamide as enhanced oil recovery chemical, J. Appl. Polym. Sci. 128(2013) 2003-2011. [5] N.K. Maurya, A. Mandal, Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery, Pet. Sci. Technol. 34(2016) 429-436. [6] R. Saha, R.V.S. Uppaluri, P. Tiwari, Silica nanoparticle assisted polymer flooding of heavy crude oil:Emulsification, rheology, and wettability alteration characteristics, Ind. Eng. Chem. Res 57(2018) 6364-6376. [7] H. Yousefvand, A. Jafari, Enhanced oil recovery using polymer/nanosilica, Proc. Mater. Sci. 11(2015) 565-570. [8] A. Maghzi, R. Kharrat, A. Mohebbi, M.H. Ghazanfari, The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery, Fuel 123(2014) 123-132. [9] M.I. Youssif, R.M. El-Maghraby, S.M. Saleh, A. Elgibaly, Silica nanofluid flooding for enhanced oil recovery in sandstone rocks, Egypt J. Pet. 27(2018) 105-110. [10] X. Sun, Y. Zhang, G. Chen, Z. Gai, Application of nanoparticles in enhanced oil recovery:A critical review of recent progress, Energies 10(2017) 345. [11] N.K. Maurya, P. Kushwaha, A. Mandal, Studies on interfacial and rheological properties of water soluble polymer grafted nanoparticle for application in enhanced oil recovery, J. Taiwan Inst. Chem. Eng. 70(2017) 319-330. [12] A. Ghadimi, R. Saidur, H. Metselaar, A review of nanofluid stability properties and characterization in stationary conditions, Int. J. Heat Mass Transfer 54(2011) 4051-4068. [13] S. Chakraborty, P.K. Panigrahi, Stability of nanofluid:A review, Appl. Therm. Eng. 174(2020) 115259. [14] L. Hendraningrat, O. Torsæter, Understanding fluid-fluid and fluid-rock interactions in the presence of hydrophilic nanoparticles at various conditions, SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers, Adelaide, Australia, 2014. [15] A.E. Bayat, R. Junin, S. Shamshirband, W.T. Chong, Transport and retention of engineered Al2O3, TiO2, and SiO2 nanoparticles through various sedimentary rocks, Sci. Rep. 5(2015) 14264. [16] E. Kissa, Dispersions:Characterization, Testing, and Measurement, Routledge, Boca Raton, 2017. [17] M. Algharaib, A. Alajmi, R. Gharbi, Improving polymer flood performance in high salinity reservoirs, J. Petrol. Sci. Eng. 115(2014) 17-23. [18] D.C. Standnes, I. Skjevrak, Literature review of implemented polymer field projects, J. Petrol. Sci. Eng. 122(2014) 761-775. [19] G. Cheraghian, L. Hendraningrat, A review on applications of nanotechnology in the enhanced oil recovery part B:Effects of nanoparticles on flooding, Int. Nano Lett. 6(2015) 1-10. [20] P.M. McElfresh, D.L. Holcomb, D. Ector, Application of nanofluid technology to improve recovery in oil and gas wells, SPE International Oilfield Nanotechnology Conference and Exhibition, NoordwijR, The Netherlands, 2012. [21] A. Esfandyari Bayat, R. Junin, A. Samsuri, A. Piroozian, M. Hokmabadi, Impact of metal oxide nanoparticles on enhanced oil recovery from limestone media at several temperatures, Energy Fuels 28(2014) 6255-6266. [22] H.S. Jazeyi, C.A. Miller, M.S. Wong, J.M. Tour, R. Verduzco, Polymer-coated nanoparticles for enhanced oil recovery, J. Appl. Polym. Sci. 131(2014) 40476. [23] M. Zargartalebi, R. Kharrat, N. Barati, Enhancement of surfactant flooding performance by the use of silica nanoparticles, Fuel 143(2015) 21-27. [24] H. Zhang, A. Nikolov, D. Wasan, Enhanced oil recovery (EOR) using nanoparticle dispersions:Underlying mechanism and imbibition experiments, Energy Fuels 28(2014) 3002-3009. [25] A.M.S. Ragab, A.E. Hannora, An experimental investigation of silica nano particles for enhanced oil recovery applications, in:SPE North Africa technical conference and exhibition, Society of Petroleum Engineers, Cairo, Egypt, 2015. [26] D.C. Marcano, D.V. Kosynkin, J.M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L.B. Alemany, W. Lu, J.M. Tour, Improved synthesis of graphene oxide, ACS Nano 4(2010) 4806-4814. [27] D.V. Kosynkin, G. Ceriotti, K.C. Wilson, J.R. Lomeda, J.T. Scorsone, A.D. Patel, J.E. Friedheim, J.M. Tour, Graphene oxide as a high-performance fluid-loss-control additive in water-based drilling fluids, ACS Appl. Mater. Interfaces 4(2011) 222-227. [28] K. Klouda, E. Zemanova, R. Friedrichova, M. Weisheitova, Fullerene C60, graphene-oxide and graphene-oxide foil with fullerene and their bromination, Int. J. Mater. Sci. Appl. 3(2014) 293-302. [29] J. Kim, L.J. Cote, F. Kim, W. Yuan, K.R. Shull, J. Huang, Graphene oxide sheets at interfaces, JACS 132(2010) 8180-8186. [30] N. Lashari, T. Ganat, Emerging applications of nanomaterials in chemical enhanced oil recovery:Progress and perspective, Chin. J. Chem. Eng. 28(8) (2020) 1995-2009. [31] M.J. Yoo, H.W. Kim, B.M. Yoo, H.B. Park, Highly soluble polyetheraminefunctionalized graphene oxide and reduced graphene oxide both in aqueous and non-aqueous solvents, Carbon 75(2014) 149-160. [32] A. Jamrozik, Graphene and graphene oxide in the oil and gas industry, AGH Drilling, Oil, Gas 34(2017) 731-744. [33] J. Phiri, P. Gane, T.C. Maloney, General overview of graphene:Production, properties and application in polymer composites, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 215(2017) 9-28. [34] B. Paulchamy, G. Arthi, B. Lignesh, A simple approach to stepwise synthesis of graphene oxide nanomaterial, J. Nanomed. Nanotechnol. 6(2015) 1. [35] M.S. Kamal, A.S. Sultan, U.A. Al-Mubaiyedh, I.A.J.P.R. Hussein, Review on polymer flooding:Rheology, adsorption, stability, and field applications of various polymer systems, Polym. Rev. 55(2015) 491-530. [36] D. Zhu, L. Wei, B. Wang, Y. Feng, Aqueous hybrids of silica nanoparticles and hydrophobically associating hydrolyzed polyacrylamide used for EOR in hightemperature and high-salinity reservoirs, Energies 7(2014) 3858-3871. [37] R.G. Larson, The Structure and Rheology of Complex Fluids, (Vol. 150)., Oxford University Press, New York, 1999. [38] A. Ahmed, I. Mohd Saaid, R.M. Pilus, A. Abbas Ahmed, A.H. Tunio, M.K. Baig, Development of surface treated nanosilica for wettability alteration and interfacial tension reduction, J. Dispersion Sci. Technol. 39(2018) 1469-1475. [39] A.A. Ahmed, I.M. Saaid, N.A.M. Akhir, Effect of surfactants and grafted copolymer on stability of bentonite particles dispersion in brine system, J. Appl Sci. Eng. Technol. 9(2015) 18-28. [40] S. Daoud-Mahammed, P. Couvreur, R. Gref, Novel self-assembling nanogels:stability and lyophilisation studies, Int. J. Pharm. 332(2007) 185-191. [41] N. Pal, N. Kumar, A. Mandal, Stabilization of dispersed oil droplets in nanoemulsions by synergistic effects of the gemini surfactant, PHPA polymer, and silica nanoparticle, Langmuir 35(2019) 2655-2667. [42] Z. Hu, M. Haruna, H. Gao, E. Nourafkan, D. Wen, Rheological properties of partially hydrolyzed polyacrylamide seeded by nanoparticles, Ind. Eng. Chem. Res 56(2017) 3456-3463. [43] P. Larkin, Infrared and Raman Spectroscopy:Principles and Spectral Interpretation, Elsevier, 2017. [44] Q.Y. Cheng, D. Zhou, Y. Gao, Q. Chen, Z. Zhang, B.H. Han, Supramolecular selfassembly induced graphene oxide based hydrogels and organogels, Langmuir 28(2012) 3005-3010. [45] H. Gao, D. Wen, N.V. Tarakina, J. Liang, A.J. Bushby, G.B. Sukhorukov, Bifunctional ultraviolet/ultrasound responsive composite TiO2/polyelectrolyte microcapsules, Nanoscale 8(2016) 5170-5180. [46] Y. Ni, H. Hao, X. Cao, S. Su, Y. Zhang, X. Wei, Preparation, characterization, and optical, electrochemical property research of CdS/PAM nanocomposites, J. Phys. Chem. B 110(2006) 17347-17352. |