[1] Y.F. Hu, X.M. Peng, S. Ling, J.Z. Zhang, C.W. Jin, Conductivities of the ternary systems Y(NO3)3 + Ce(NO3)3 + H2O, Y(NO3)3 + Nd(NO3)3 + H2O, Ce(NO3)3 + Nd(NO3)3 + H2O and their binary subsystems at different temperatures, J. Chem. Eng. Data 56 (10) (2011) 3794-3799.[2] C.E. Ruby, J. Kawai, The densities, equivalent conductances and relative viscosities at 25 ℃, of solutions of hydrochloric acid, potassiumchloride and sodiumchloride, and of their binary and ternary mixtures of constant chloride-ion-constituent content, J. Am. Chem. Soc. 48 (5) (1926) 1119-1128.[3] T. Isono, Density, viscosity, and electrolytic conductivity of concentrated aqueous electrolyte solutions at several temperatures. Alkaline-earth chlorides, LaCl3, Na2SO4, NaNO3, NaBr, KNO3, KBr, and Cd(NO3)2, J. Chem. Eng. Data 29 (1) (1984) 45-52.[4] H.L. Zhang, S.J. Han, Viscosity and density of water + sodium chloride+ potassium chloride solutions at 298.15 K, J. Chem. Eng. Data 41 (3) (1996) 516-520.[5] H.L. Zhang, G.H. Chen, S.J. Han, Viscosity and density of NaCl-CaCl2-H2O and KCl- CaCl2-H2O at 298.15 K, J. Chem. Eng. Data 42 (3) (1997) 526-530.[6] E. Königsberger, L.-C. Königsberger, P. May, B. Harris, Properties of electrolyte solutions relevant to high concentration chloride leaching. II. Density, viscosity and heat capacity of mixed aqueous solutions of magnesium chloride and nickel chloride measured to 90 ℃, Hydrometallurgy 90 (2-4) (2008) 168-176.[7] Y.F. Hu, H. Lee, Prediction of viscosity ofmulticomponent electrolyte solutions based on the Eyring's absolute rate theory and the semi-ideal hydration model, Electrochem. Acta 48 (13) (2003) 1789-1796.[8] Y.F. Hu, Prediction of viscosity of mixed electrolyte solutions based on the Eyring's absolute rate theory and the equations of Patwardhan and Kumar, Chem. Eng. Sci. 59 (12) (2004) 2457-2464.[9] Z.B. Li, Y.G. Li, J.F. Lu, Surface tension model for concentrated electrolyte aqueous solutions by the Pitzer equation, Ind. Eng. Chem. Res. 38 (3) (1999) 1133-1139.[10] A. Andrzej, M.L. Malgorzata, Computation of electrical conductivity of multicomponent aqueous systems in wide concentration and temperature ranges, Ind. Eng. Chem. Res. 36 (5) (1997) 1932-1943.[11] Y.C.Wu,W.F. Koch, E.C. Zhong, H.L. Friedman, The cross-square rule for transport in electrolyte mixtures, J. Phys. Chem. 92 (6) (1988) 1692-1695.[12] T.F. Young, Y.C. Wu, A.A. Krawetz, Thermal effects of the interactions between ions of like charge, Discuss. Faraday Soc. 24 (1957) 37-42.[13] T.F. Young, Y.C. Wu, A.A. Krawetz, General discussion, Discuss. Faraday Soc. 24 (1957) 66-82.[14] K. Indaratna, A.J. McQuillan, R.A. Matheson, Conductivity of unsymmetrical and mixed electrolytes. Dilute aqueous cadmium chloride and barium chloride-hydrochloric acid mixtures at 298.15 K, J. Chem. Soc. Faraday Trans. 82 (1986) 2755-2762 (1).[15] Y.F. Hu, The thermodynamics of nonelectrolyte systems at constant activities of any number of components, J. Phys. Chem. B 107 (47) (2003) 13168-13177.[16] Y.F. Hu, S.S. Fan, D.Q. Liang, The semi-ideal solution theory for mixed ionic solutions at solid-liquid-vapor equilibrium, J. Phys. Chem. A 110 (12) (2006) 4276-4284.[17] Y.F. Hu, C.W. Jin, J.Z. Zhang, S. Ling, Conductivities of the ternary systems Y(NO3)3 + La(NO3)3 + H2O, La(NO3)3 + Ce(NO3)3 + H2O, La(NO3)3 + Nd(NO3)3 + H2O and their binary subsystems at different temperatures, J. Solut. Chem. 40 (8) (2011) 1447-1457.[18] Y.F. Hu, X.M. Zhang, J.G. Li, Q.Q. Liang, The semi-ideal solution theory. 2. Extension to conductivity of mixed electrolyte solutions, J. Phys. Chem. B 112 (48) (2008) 15376-15381.[19] T. Welton, Room-temperature ionic liquids. Solvents for synthesis and catalysis, Chem. Rev. 99 (8) (1999) 2071-2084.[20] J. Dupont, R.F. de Souza, P.A.Z. Suarez, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. 102 (10) (2002) 3667-3692.[21] C.P. Fredlake, J.M. CrosthWaite, D.G. Hert, Thermophysical properties of imidazolium-based ionic liquids, J. Chem. Eng. Data 49 (4) (2004) 954-964.[22] S. Fletcher, S. Fiona, N. Hudson, P. Hall, Physical properties of selected ionic liquids for use as electrolytes and other industrial applications, J. Chem. Eng. Data 55 (2) (2010) 778-782.[23] A. Fernandez, J.S. Torrecilla, J. Garcia, F. Rodriguez, Thermophysical properties of 1-ethyl-3-methylimidazolium ethylsulfate and 1-butyl-3-methylimidazolium methylsulfate ionic liquids, J. Chem. Eng. Data 52 (5) (2007) 1979-1983.[24] K.R. Seddon, A. Stark, M.J. Torres, Influence of chloride, water, and organic solvents on the physical properties of ionic liquids, Pure Appl. Chem. 72 (12) (2000) 2275-2287.[25] J.Z. Yang, J. Tong, J.B. Li, J.G. Li, J. Tong, Surface tension of pure and water-containing ionic liquid C5MIBF4(1-methyl-3-pentylimidazolium tetrafluoroborate), J. Colloid Interface Sci. 313 (1) (2007) 374-377.[26] B. Mokhtarani, A. Sharifi, H.R. Mortaheb, M. Mirzaei, M. MafiMafi, F. Sadeghian, Density and viscosity of pyridinium-based ionic liquids and their binary mixtures with water at several temperatures, J. Chem. Thermodyn. 41 (3) (2009) 323-329.[27] S.J. Zhang, X. Li, H.P. Chen, J.F.Wang, J.M. Zhang, M.L. Zhang, Determination of physical properties for the binary system of 1-ethyl-3-methylimidazolium tetrafluoroborate + H2O, J. Chem. Eng. Data 49 (4) (2004) 760-764.[28] M.L. Ge, R.S. Zhao, Y.F. Yi, Q. Zhang, L.S.Wang, Densities and viscosities of 1-butyl-3- methylimidazolium trifluoromethanesulfonate + H2O binary mixtures at T = (303.15 to 343.15) K, J. Chem. Eng. Data 53 (10) (2008) 2408-2411.[29] E. Go?mez, B. González, Á. Domínguez, E. Tojo, J. Tojo, Dynamic viscosities of a series of 1-alkyl-3-methylimidazolium chloride ionic liquids and their binary mixtures with water at several temperatures, J. Chem. Eng. Data 51 (2) (2006) 696-701.[30] H. Rodriguez, J.F. Brennecke, Temperature and composition dependence of the density and viscosity of binarymixtures ofwater+ionic liquid, J. Chem. Eng. Data 51 (6) (2006) 2145-2155.[31] J.F. Fernándeza, D.Waterkampa, J. Thöminga, Recovery of ionic liquids from wastewater: aggregation control for intensified membrane filtration, Desalination 224 (1-3) (2008) 52-56.[32] J.J. Wang, H.Y. Wang, S.L. Zhang, H.C. Zhang, Y. Zhao, Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions, J. Phys. Chem. B 111 (22) (2007) 6181-6188.[33] H. Shekaari, S.S. Mousavi, Conductometric studies of aqueous ionic liquids, 1-alkyl- 3-methylimidazolium halide, solutions at T = 298.15-328.15 K, Fluid Phase Equilib. 286 (2) (2009) 120-126.[34] L.A.S. Ries, F.A. do Amaral, K. Matos, E.M.A. Martini, M.O. de Souza, R.F. de Souza, Evidence of change in the molecular organization of 1-N-butyl-3-methylimidazolium tetrafluoroborate ionic liquid solutions with the addition of water, Polyhedron 27 (15) (2008) 3287-3293.[35] A. Stoppa, J. Hunger, R. Buchner, Conductivities of binary mixtures of ionic liquids with polar solvents, J. Chem. Eng. Data 54 (2) (2009) 472-479.[36] J. Fuller, R.T. Carlin, R.A. Osteryoung, The room temperature ionic liquid 1-ethyl-3- methylimidazolium tetrafluoroborate: electrochemical couples and physical properties, J. Electrochem. Soc. 144 (11) (1997) 3881-3885.[37] A.B. McEwen, H.L. Ngo, K. LeCompte, J.L. Joldman, Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications, J. Electrochem. Soc. 146 (5) (1999) 1687-1695.[38] P. Wasserscheid, A. Bösmann, 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate — An even ‘greener’ ionic liquid, Green Chem. 4 (2002) 400-404.[39] X.M. Chu, Y.F. Hu, J.G. Li, Q.Q. Liang, Desulfurization of diesel fuel by extraction with [BF4]-based ionic liquids, Chin. J. Chem. Eng. 16 (6) (2008) 881-884.[40] D.G. Miller, Binary mixing approximations and relations between specific conductance, molar conductance, equivalent conductance, and ionar conductance for mixtures, J. Phys. Chem. 100 (4) (1996) 1220-1226.[41] X.M. Zhang, Y.F. Hu, X.M. Peng,W.J. Yue, Conductivities of several ternary electrolyte solutions and their binary subsystems at 293.15, 298.15, and 303.15 K, J. Solut. Chem. 38 (10) (2009) 1295-1306.[42] J.G. Li, Y.F. Hu, C.W. Jin, H.D. Chu, X.M. Peng, Y.G. Liang, Study on the conductivities of pure and aqueous bromide-based ionic liquids at different temperatures, J. Solut. Chem. 39 (12) (2010) 1877-1887.[43] Y.F. Hu, H.D. Chu, Extension of the simple equations for prediction of the properties of mixed electrolyte solutions to themixed ionic liquid solutions, Ind. Eng. Chem. Res. 50 (7) (2011) 4161-4165.[44] R.A. Robinson, R.H. Stokes, Electrolyte Solutions, 2nd (revised) ed. Butterworth, London, 1965.[45] A.B. Zdanovskii, Regularities in the property variations of mixed solutions, Nauk SSSR, No. 6Tr. Solyanoi Lab. Akad.1936. 5-70. |