[1] P.E. Savage, N. Akiya, Roles of water for chemical reactions in high-temperature water, Chem. Rev. 102 (2002) 2725-2750.[2] J. Zhou, W.Wang, C. Zhong, Molecular dynamics investigation of benzene in supercritical water, Chin. J. Chem. Eng. 9 (3) (2000) 196-199.[3] P.E. Savage, Organic chemical reactions in supercritical water, Chem. Rev. 99 (1999) 603-621.[4] Y. Matsumura, T. Minowa, B. Potic, S.R. Kersten, W. Prins, W. Swaaij, B. Beld, D.C. Elliott, G. Neuenschwander, A. Kruse, M.J. Antal, Biomass gasification in near-and super-critical water: Status and prospects, Biomass Bioenergy 29 (2005) 269-292.[5] L. Su, X.Wu, X. Liu, L. Chen, K. Chen, S. Hong, Effect of increasing course of temperature and pressure on polypropylene degradation in supercriticalwater, Chin. J. Chem. Eng. 15 (2007) 738-741.[6] F. Chen, S. Wu, J. Chen, S. Rong, COD removal efficiencies of some aromatic compounds in supercriticalwater oxidation, Chin. J. Chem. Eng. 9 (2) (2000) 137-140.[7] P. Svensson, Supercritical water destroys organic wastes, Chem. Technol. Eur. 2 (1995) 16.[8] Q. Ren,H. Xing, Z. Bao, B. Su, Q. Yang, Y. Yang, Z. Zhang, Recent advances in separation of bioactive natural products, Chin. J. Chem. Eng. 21 (9) (2013) 937-952.[9] H. Lu,M. Ren,M. Zhang, Y. Chen, Pretreatment of corn stover using supercritical CO2 with water-ethanol as co-solvent, Chin. J. Chem. Eng. 21 (5) (2013) 551-557.[10] R. Alireza, E. Fatemeh, B. Mehdi, Analytical model for predicting the heat loss effect on the pyrolysis of biomass particles, Chin. J. Chem. Eng. 21 (10) (2013) 1114-1120.[11] A. Kruse, T. Henningsen, A. S?nag, J. Pfeiffer, Biomass gasification in supercritical water: Influence of the dry matter content and the formation of phenols, Ind. Eng. Chem. Res. 42 (2003) 3711-3717.[12] Q.Q. Guan, C.H.Wei, P.E. Savage, Kinetic model for supercritical water gasification of algae, Phys. Chem. Chem. Phys. 14 (2012) 3140-3147.[13] Q.Q. Guan, C.H. Wei, P.E. Savage, Hydrothermal gasification of Nannochloropsis sp. with Ru/C, Energy Fuels 26 (2012) 4575-4582.[14] Y. Matsumura, Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan, Energy Convers. Manag. 43 (2002) 1301-1310.[15] Q.Q. Guan, C.H. Wei, H.S. Shi, C.F. Wu, X.S. Chai, Partial oxidative gasification of phenol for hydrogen in supercritical water, Appl. Energy 88 (2011) 2612-2616.[16] Q.Q. Guan, C.H. Wei, X.S. Chai, Pathways and kinetics of partial oxidation of phenol in supercritical water, Chem. Eng. J. 175 (2011) 201-206.[17] R. Smith, T. Adschiri, K. Arai, Energy integration of methane's partial-oxidation in supercritical water and energy analysis, Appl. Energy 71 (2002) 205-214.[18] M. Watanabe, M. Mochiduki, S. Sawamoto, Partial oxidation of n-hexadecane and polyethylene in supercritical water, J. Supercrit. Fluids 20 (2001) 257-266.[19] S. Letellier, F. Marias, P. Cezac, J.P. Serin, Gasification of aqueous biomass in supercritical water: a thermodynamic equilibrium analysis, J. Supercrit. Fluids 51 (2010) 353-361.[20] F.J. Ortiz, P. Ollero, A. Serrera, Thermodynamic analysis of the autothermal reforming of glycerol using supercritical water, Int. J. Hydrog. Energy 36 (2011) 12186-12199.[21] C. Graschinsky, P. Giunta, N. Amadeo, M. Laborde, Thermodynamic analysis of hydrogen production by autothermal reforming of ethanol, Int. J. Hydrog. Energy 37 (2012) 10118-10124.[22] F. Gallucci, M.V.S. Annaland, J.A.M. Kuipers, Pure hydrogen production via autothermal reforming of ethanol in a fluidized bed membrane reactor: A simulation study, Int. J. Hydrog. Energy 35 (2010) 1659-1668.[23] D. Papadias, H.D. Lee, Autothermal reforming of gasoline for fuel cell applications: A transient reactor model, Ind. Eng. Chem. Res. 45 (2006) 5841-5858.[24] F.J. Ortiz, P. Ollero, A. Serrera, S. Galera, Process integration and energy analysis of the autothermal reforming of glycerol using supercriticalwater, Energy 42 (2012) 192-203.[25] A.A. Peterson, F. Vogel, R.P. Lachance, M. Froling, M.J. Antal, J.W. Tester, Thermochemical biofuel production in hydrothermal media: A review of sub-and supercritical water technologies, Energy Environ. Sci. 1 (2008) 32-65.[26] H. Jin, Y.J. Lu, L.J. Guo, C.Q. Cao, X.M. Zhang, Hydrogen production by partial oxidative gasification of biomass and its model compounds in supercritical water, Int. J. Hydrog. Energy 35 (2010) 3001-3010.[27] A. Muhlbauer, J. Raal, Computational and thermodynamic interpretation of highpressure vapour-liquid equilibrium—A review, J. Chem. Eng. 60 (1995) 1-29.[28] D.S. Abrams, F. Seneci, P.L. Chueh, Thermodynamics of multicomponent liquidmixtures containing subcritical and supercritical components, Ind. Eng. Chem. Fundam. 14 (1975) 52-54.[29] R.J. Wooley, V. Putsche, Development of an ASPEN PLUS Physical Property Database for Biofuel Components, National Renewable Energy Laboratory, U.S., 1996[30] E. Gasafi, M.Y. Reinecke, A. Kruse, L. Schebek, Economic analysis of sewage sludge gasification in supercritical water for hydrogen production, Biomass Bioenergy 32 (2008) 1085-1096.[31] I.L. Pioro, R.B. Duffey, Experimental heat transfer in supercritical water flowing inside channels (survey), Nucl. Eng. Des. 235 (2005) 2407-2430.[32] I. Lee, M. Kim, S.K. Ihm, Gasification of glucose in supercritical water, Ind. Eng. Chem. Res. 41 (2002) 1182-1188.[33] F. Resende, S.A. Fraley, M.J. Berger, P.E. Savage, Noncatalytic gasification of lignin in supercritical water, Energy Fuel 22 (2008) 1328-1334.[34] F. Marias, S. Letellier, P. Cezac, J.P. Serin, Energetic analysis of gasification of aqueous biomass in supercritical water, Biomass Bioenergy 35 (2011) 59-73. |