[1] Y. Belmabkhout, G. DeWeireld, A. Sayari, Amine-bearing mesoporous silica for CO2 and H2S removal from natural gas and biogas, Langmuir 25(2009) 13257-13278.[2] Y. Zhao, B. Jung, L. Ansaloni,W.S. Winston Ho, Multiwalled carbon nanotube mixed matrix membranes containing amines for high pressure CO2/H2 separation, J. Membr. Sci. 459(2014) 233-243.[3] H.P. Hsieh, Inorganic Membranes for Separation and Reaction, Elsevier, Amsterdam, 1996.[4] X.M. Liu, R.B. Lin, J.P. Zhang, X.M. Chen, Low-dimensional porous coordination polymers based on 1,2-bis(4-pyridyl) hydrazine:from structure diversity to ultrahigh CO2/CH4 selectivity, Inorg. Chem. 51(2012) 5686-5692.[5] S.G. Li, J.G. Martinek, J.L. Falconer, R.D. Noble, T.Q. Gardner, High-pressure CO2/CH4 separation using SAPO-34 membrane, Ind. Eng. Chem. Res. 44(2005) 3220-3228.[6] D.Q. Vu, W.J. Koros, S.J. Miller, High pressure CO2/CH4 separation using carbon molecular sieve hollow fiber membranes, Ind. Eng. Chem. Res. 41(2002) 367-380.[7] A. Huang, Y. Chen, Q. Liu, N. Wang, J. Jiang, J. Caro, Synthesis of highly hydrophobic and permselective metal-organic framework Zn(BDC)(TED)0.5 membranes for H2/CO2 separation, J. Membr. Sci. 454(2014) 126-132.[8] H. Guo, G. Zhu, I.J. Hewitt, S. Qiu, Twin copper source growth of metal-organic framework membrane:Cu3(BTC)2 with high permeability and selectivity for recycling H2, J. Am. Chem. Soc. 131(2009) 1646-1647.[9] Y. Liu, E. Hu, E.A. Khan, Z. Lai, Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture, J. Membr. Sci. 353(2010) 36-40.[10] W.Wang, X. Dong, J. Nan,W. Jin, Z. Hu, Y. Chen, J. Jiang, A homochiral metal-organic framework membrane for enantioselective separation, Chem. Commun. 48(2012) 7022-7024.[11] A. Huang, Y. Chen, N.Wang, Z. Hu, J. Jiang, J. Caro, A highly permeable and selective zeolitic imidazolate framework ZIF-95 membrane for H2/CO2 separation, Chem. Commun. 48(2012) 10981-10983.[12] S. Keskin, D.S. Sholl, Screening metal-organic framework materials for membranebased methane/carbon dioxide separations, J. Phys. Chem. C 111(2007) 14055-14059.[13] C. Chmelik, J. Baten, R. Krishna, Hindering effects in diffusion of CO2/CH4 mixtures in ZIF-8 crystals, J. Membr. Sci. 397-398(2012) 87-91.[14] T.Watanabe, S. Keskin, S. Nair, D.S. Sholl, Computational identification of ametal organic framework for high selectivity membrane-based CO2/CH4 separations:Cu(hfipbb)(H2hfipbb)0.5, Phys. Chem. Chem. Phys. 11(2009) 11389-11394.[15] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(2008) 390-400.[16] I. Erucar, S. Keskin, Screening metal-organic framework-based mixed matrix membranes for CO2/CH4 separations, Ind. Eng. Chem. Res. 50(2011) 12606-12616.[17] S. Keskin, D.S. Sholl, Selecting metal organic frameworks as enabling materials in mixed matrix membranes for high efficiency natural gas purification, Energy Environ. Sci. 3(2010) 343-351.[18] I. Erucar, S. Keskin, High CO2 selectivity of an amine-functionalized metal organic framework in adsorption-based and membrane-based gas separation, Ind. Eng. Chem. Res. 52(2013) 3462-3472.[19] G. Yilmaz, S. Keskin, Predicting the performance of zeolite imidazolate framework/polymermixedmatrix membranes for CO2, CH4, and H2 separations using molecular simulations, Ind. Eng. Chem. Res. 51(2012) 14218-14228.[20] R. Babarao, Z. Hu, J. Jiang, Storage and separation of CO2 and CH4 in silicalite, C168 schwarzite, and IRMOF-1:a comparative study from Monte Carlo simulation, Langmuir 23(2007) 659-666.[21] B. Liu, B. Smit, Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs, J. Phys. Chem. C 114(2010) 8515-8522.[22] L. Hamon, C. Serre, T. Devic, T. Loiseau, F.Millange, G.D.Weireld, Comparative study of hydrogen sulfide adsorption in the MIL-53(Al, Cr, Fe), MIL-47(V), MIL-100(Cr), and MIL-101(Cr) metal-organic frameworks at room temperature, J. Am. Chem. Soc. 131(2009) 8775-8777.[23] X. Peng, D. Cao, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas, AIChE J. 59(2013) 2928-2942.[24] S. Vaesen, V. Guillerm, Q. Yang, A.D. Wiersum, B. Marszalek, B. Gil, A. Vimont, M. Daturi, T. Devic, P.L. Llewellyn, C. Serre, G. Maurin, G.D. Weireld, A robust aminofunctionalized titanium(IV) based MOF for improved separation of acid gases, Chem. Commun. 49(2013) 10082-10084.[25] J.H. Cavka, S. Jakobsen, U. Olsbye, N. Guillou, C. Lamberti, S. Bordiga, K.P. Lillerud, A new zirconium inorganic building brick formingmetal organic frameworks with exceptional stability, J. Am. Chem. Soc. 130(2008) 13850-13851.[26] H. Jasuja, J. Zhang, D.S. Sholl, K.S.Walton, Rational tuning ofwater vapor and CO2 adsorption in highly stable Zr-based MOFs, J. Phys. Chem. C 116(2012) 23526-23532.[27] Q. Yang, V. Guillerm, F. Ragon, A.D. Wiersum, P.L. Llewellyn, C. Zhong, T. Devic, C. Serre, G. Maurin, CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks, Chem. Commun. 48(2012) 9831-9833.[28] Q. Yang, A.D.Wiersum, H. Jobic, V. Guillerm, C. Serre, P.L. Llewellyn, G. Maurin, Understanding the thermodynamic and kinetic behavior of the CO2/CH4 gas mixture within the porous Zirconium terephthalate UiO-66(Zr):a joint experimental and modeling approach, J. Phys. Chem. C 115(2011) 13768-13774.[29] D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Revealing the structure-property relationships of metal-organic frameworks for CO2 capture from flue gas, Langmuir 28(2012) 12094-12099.[30] Q. Yang, S. Vaesen, F. Ragon, A.D.Wiersum, D.Wu, A. Lago, T. Devic, C. Martineau, F. Taulelle, P.L. Llewellyn, H. Jobic, C. Zhong, C. Serre, G.D.Weireld, G. Maurin, A water stable metal-organic framework with optimal features for CO2 capture, Angew. Chem. 125(2013) 1-6.[31] D.Wu, G. Maurin, Q. Yang, C. Serre, H. Jobic, C. Zhong, Computational exploration of a Zr-carboxylate based metal-organic framework as a membrane material for CO2 capture, J. Mater. Chem. A 2(2014) 1657-1661.[32] O.G. Nik, X.Y. Chen, S. Kaliaguine, Functionalized metal organic frameworkpolyimide mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci. 15(2012) 48-61.[33] G. Kamath, N. Lubna, J.J. Potoff, Effect of partial charge parametrization on the fluid phase behavior of hydrogen sulfide, J. Chem. Phys. 123(2005) 124505-124511.[34] M.G. Martin, J.I. Siepmann, Transferable potentials for phase equilibria. 1. Unitedatom description of n-alkanes, J. Phys. Chem. B 102(1998) 2569-2577.[35] S.L. Mayo, B.D. Olafson,W.A. Goddard, DREIDING:a generic force field for molecular simulations, J. Phys. Chem. 94(1990) 8897-8909.[36] A.K. Rappé, C.J. Casewit, K.S. Colwell,W.A. Goddard III,W.M. Skiff, UFF, a full periodic table force field formolecularmechanics andmolecular dynamics simulations, J. Am. Chem. Soc. 114(1992) 10024-10035.[37] Q. Yang, A.D. Wiersum, P.L. Llewellyn, V. Guillerm, C. Serre, G. Maurin, Functionalizing porous zirconium terephthalate UiO-66(Zr) for natural gas upgrading:a computational exploration, Chem. Commun. 47(2011) 9603-9605.[38] H. Huang, W. Zhang, D. Liu, B. Liu, G. Chen, C. Zhong, Effect of temperature on gas adsorption and separation in ZIF-8:a combined experimental and molecular simulation study, Chem. Eng. Sci. 66(2011) 6297-6305.[39] L. Zhang, G. Wu, J. Jiang, Adsorption and diffusion of CO2 and CH4 in zeolitic imidazolate framework-8:effect of structural flexibility, J. Phys. Chem. C 118(2014) 8788-8794.[40] Q. Yang, C. Zhong, Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks, J. Phys. Chem. B 110(2006) 17776-17783.[41] Q. Yang, D. Liu, C. Zhong, J. Li, Development of computational methodologies for metal-organic frameworks and their application in gas separations, Chem. Rev. 113(2013) 8261-8323.[42] W. Smith, T.R. Forester, DL_POLY_2.0:a general-purpose parallel molecular dynamics simulation package, J. Mol. Graphics 14(1996) 136-141.[43] A.I. Skoulidas, D.S. Sholl, R. Krishna, Correlation effects in diffusion of CH4/CF4 mixtures in MFI zeolite:a study linking MD simulations with the Maxwell-Stefan formulation, Langmuir 19(2003) 7977-7988.[44] J.C. Maxwell, Treatise on Electricity and Magnetism, Oxford University Press, London, 1873.[45] A.K. Dalai, E.L. Tollefson, Kinetics and reaction mechanism of catalytic oxidation of low concentrations of hydrogen sulfide in natural gas over activated carbon, Can. J. Chem. Eng. 76(1998) 902-914.[46] C. Cai, Z. Xie, R.H.Worden, G. Hu, L.Wang, H. He, Methane-dominated thermochemical sulphate reduction in the Triassic Feixianguan Formation East Sichuan Basin, China:towards prediction of fatal H2S concentrations, Mar. Pet. Geol. 21(2004) 1265-1279.[47] A. Petersson, A. Wellinger, Biogas upgrading technologies-developments and innovations, Task 37-Energy from Biogas and Landfill Gas, IEA Bioenergy, 2009.[48] N. Gilani, J. Towfighi, A. Rashidi, T. Mohammadi, M.R. Omidkhah, A. Sadeghian, Investigation of H2S separation from H2S/CH4 mixtures using functionalized and non-functionalized vertically aligned carbon nanotube membranes, Appl. Surf. Sci. 270(2013) 115-123.[49] E.S. Peterson, M.L.R. Stone, R. McCaffrey, D.G. Cummings, Mixed-gas separation properties of phosphazene polymer membranes, Sep. Sci. Technol. 28(1993) 423-440.[50] J. Vaughn, W.J. Koros, Effect of the amide bond diamine structure on the CO2, H2S and CH4 transport properties of a series of novel 6FDA-based polyamide-imides for natural gas purification, Macromolecules 45(2012) 7036-7049.[51] S. Sridhar, B. Smitha, S.Mayor, B. Prathab, T.M. Aminabhavi, Gas permeation properties of polyamidemembrane prepared by interfacial polymerization, J. Mater. Sci. 42(2007) 9392-9401.[52] M.P. Chenar, H. Savoji, M. Soltanieh, T. Matsuura, S. Tabe, Removal of hydrogen sulfide from methane using commercial polyphenylene oxide and cardo-type polyimide hollow fiber membranes, Korean J. Chem. Eng. 28(2011) 902-913.[53] W.L. Robb, Thin silicone membranes-their permeation properties and some applications, Ann. N. Y. Acad. Sci. 146(1968) 119-137. |