[1] T.F. Edgar, S.W. Butler,W.J. Campbell, C. Pfeiffer, C. Bode, S.B.Hwang, K. Balakrishnan, J. Hahn, Automatic control inmicroelectronicsmanufacturing: Practices, challenges, and possibilities, Automatica 36 (11) (2000) 1567-1603.[2] J.-X. Xu, Y. Chen, T.H. Lee, S. Yamamoto, Terminal iterative learning control with an application to RTPCVD thickness control, Automatica 35 (9) (1999) 1535-1542.[3] J.H. Lee, K.S. Lee, Iterative learning control applied to batch processes: An overview, Control. Eng. Pract. 15 (10) (2007) 1306-1318.[4] T. Sato, Spectral emissivity of silicon, Jpn. J. Appl. Phys. 6 (3) (1967) 339.[5] N. Cressie, C.K. Wikle, Statistics for spatio-temporal data, Wiley.com, 2011.[6] A. Grancharova, J. Kocijan, T.A. Johansen, Explicit stochastic predictive control of combustion plants based on Gaussian process models, Automatica 44 (6) (2008) 1621-1631.[7] T. Holsclaw, B. Sansó, H.K. Lee, K. Heitmann, S. Habib, D. Higdon, U. Alam, Gaussian process modeling of derivative curves, Technometrics 55 (1) (2013) 57-67.[8] K. A?man, J. Kocijan, Application of Gaussian processes for black-box modelling of biosystems, ISA Trans. 46 (4) (2007) 443-457.[9] K. A?man, J. Kocijan, Dynamical systems identification using Gaussian processmodels with incorporated local models, Eng. Appl. Artif. Intell. 24 (2) (2011) 398-408.[10] G. Gregor?i?, G. Lightbody, Nonlinear system identification: From multiple-model networks to Gaussian processes, Eng. Appl. Artif. Intell. 21 (7) (2008) 1035-1055.[11] G. Gregor?i?, G. Lightbody, Gaussian process approach for modelling of nonlinear systems, Eng. Appl. Artif. Intell. 22 (4) (2009) 522-533.[12] M.P. Deisenroth, C.E. Rasmussen, J. Peters, Gaussian process dynamic programming, Neurocomputing 72 (7) (2009) 1508-1524.[13] P. Gao, A. Honkela, M. Rattray, N.D. Lawrence, Gaussian process modelling of latent chemical species: Applications to inferring transcription factor activities, Bioinformatics 24 (16) (2008) i70-i75.[14] T. Chen, B.Wang, Bayesian variable selection for Gaussian process regression: Application to chemometric calibration of spectrometers, Neurocomputing 73 (13) (2010) 2718-2726.[15] A.F. Hernandez, M.A. Grover, Stochastic dynamic predictions using Gaussian process models for nanoparticle synthesis, Comput. Chem. Eng. 34 (12) (2010) 1953-1961.[16] C. Rasmussen, C. Williams, Gaussian processes for machine learning, MIT Press, Cambridge, MA, 2006.[17] T.A. Badgwell, T.F. Edgar, I. Trachtenberg, Modeling and scale-up of multiwafer LPCVD reactors, AIChE J. 38 (6) (1992) 926-938.[18] K.F. Roenigk, K.F. Jensen, Analysis ofmulticomponent LPCVD processes deposition of pure and in situ doped Poly-Si, J. Electrochem. Soc. 132 (2) (1985) 448-454.[19] C. Vinante, P. Duverneuil, J.P. Couderc, A two dimensional model for LPCVD reactors hydrodynamics and mass transfer, J. Phys. Colloq. 50 (C5) (1989) C5-35-C5-43.[20] Q. He, S.J. Qin, A.J. Toprac, Computationally efficientmodeling ofwafer temperatures in a low-pressure chemical vapor deposition furnace, IEEE Trans. Semicond. Manuf. 16 (2) (2003) 342-350.[21] C.K. Williams, Prediction with Gaussian processes: From linear regression to linear prediction and beyond, Learning in graphical models, Springer, Netherlands 1998, pp. 599-621.[22] R. Murray-Smith, D. Sbarbaro, C.E. Rasmussen, A. Girard, Adaptive, cautious, predictive control with Gaussian process priors, 13th IFAC symposium on system identification, Netherlands, 2003.[23] C.-Y. Chen, K.-C. Chang, C.-C. Lu, G.-B. Wang, Study of high-tech process furnace using inherently safer design strategies (II). Deposited film thickness model, J. Loss Prev. Process Ind. 26 (1) (2013) 225-235. |