[1] C. Laugel, et al., Oil-water-oil multiple emulsions for prolonged delivery of hydrocortisone after topical application:comparison with simple emulsions, Int. J. Pharm. 160(1) (1998) 109-117.[2] B. Raghuraman, et al., Emulsion liquid membranes for waste-water treatmentequilibrium-models for some typicalmetal-extractant systems, Environ. Sci. Technol. 28(6) (1994) 1090-1098.[3] K.J. Lissant, et al., Structure of high internal phase ratio emulsions, J. Colloid Interface Sci. 47(2) (1974) 416-423.[4] M. Gallarate, et al., On the stability of ascorbic acid in emulsified systems for topical and cosmetic use, Int. J. Pharm. 188(2) (1999) 233-241.[5] C. Kaewsaneha, et al., Janus Colloidal Particles:Preparation, Properties, and Biomedical Applications, ACS Appl. Mater. Interfaces 5(6) (2013) 1857-1869.[6] J. Bibette, et al., Emulsion Science-Basic Principles. An Overview-Introduction, Emulsion Science:Basic Principles-An Overview, 18120021-4.[7] S. Matsumoto, et al., Attempt at preparing water-in-oil-in-water multiple-phase emulsions, J. Colloid Interface Sci. 57(2) (1976) 353-361.[8] L.Y. Chu, et al., Controllable monodisperse multiple emulsions, Angew. Chem. Int. Ed. 46(47) (2007) 8970-8974.[9] H.C. Shum, et al., Multicompartment polymersomes from double emulsions, Angew. Chem. Int. Ed. 50(7) (2011) 1648-1651.[10] L.L.A. Adams, et al., Single step emulsification for the generation of multi-component double emulsions (vol 8, pg 10719, 2012), Soft Matter 8(48) (2012) 12132.[11] S.K. Lee, et al., Synthesis, assembly and reaction of a nanocatalyst in microfluidic systems:a general platform, Lab Chip 12(20) (2012) 4080-4084.[12] M. Shaohua, et al., Fabrication ofmicrogel particles with complex shape via selective polymerization of aqueous two-phase systems, Small 8(15) (2012) 2356-2360.[13] W. Wang, et al., Thermo-driven microcrawlers fabricated via a microfluidic approach, J. Phys. D. Appl. Phys. (2013) 46(11).[14] M. Seo, et al., Microfluidic consecutive flow-focusing droplet generators, Soft Matter 3(8) (2007) 986-992.[15] Z.H. Nie, et al., Polymer particles with various shapes andmorphologies produced in continuous microfluidic reactors, J. Am. Chem. Soc. 127(22) (2005) 8058-8063.[16] N. Pannacci, et al., Equilibrium and nonequilibrium states in microfluidic double emulsions, Phys. Rev. Lett. 101(16) (2008).[17] S. Torza, et al., 3-phase interactions in shear and electrical fields, J. Colloid Interface Sci. 33(1) (1970) 67-71.[18] J.H. Xu, et al., Correlations of droplet formation in T-junction microfluidic devices:from squeezing to dripping, Microfluid. Nanofluid. 5(6) (2008) 711-717.[19] J.H. Xu, et al., Controllable preparation of monodisperse O/W andW/O emulsions in the same microfluidic device, Langmuir 22(2006) 7943-7946.[20] T.Ward,M. Faivre, H.A. Stone, Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction, Langmuir 26(2010) 9233-9239.[21] J.H. Xu, et al., The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices, Langmuir 28(2012) 9250-9258.[22] Y. Chen, et al., Microfluidic generation of multicolor quantum-dot-encoded core-shell microparticles with precise coding and enhanced stability, Langmuir 30(2014) 8538-8542.[23] J.H. Xu, et al., Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device, Lab Chip 12(2012) 2029-2036.[24] R. Chen, et al., Controllable microfluidic production of gas-in-oil-in-water emulsions for hollow microspheres with thin polymer shells, Lab Chip 12(2012) 3858-3860.[25] J.H. Xu, et al., Microfluidic preparation and structure evolution of double emulsions with two-phase cores, RSC Adv. 4(4) (2014) 1900-1906.[26] K. Xu, et al., A region-selective modified capillary microfluidic device for fabricating water-oil Janus droplets and hydrophilic-hydrophobic anisotropic microparticles, RSC Adv. 5(58) (2015) 46981-46988.[27] J.H. Moon, et al., Fabrication of ordered macroporous cylinders by colloidal templating in microcapillaries, Langmuir 20(2004) 2033-2035.[28] A. Gunther, et al., Multiphase microfluidics:from flow characteristics to chemical and materials synthesis, Lab Chip 6(2006) 1487-1503.[29] K. Xu, et al., Extraction-derived self-organization of colloidal photonic crystal particles within confining aqueous droplets, Cryst. Growth Des. 13(2013) 926-935.[30] K. Xu, et al., A novel method of fabricating, adjusting, and optimizing polystyrene colloidal crystal nonspherical microparticles from gas-water Janus droplets in a double coaxial microfluidic device, Cryst. Growth Des. 14(2014) 401-405.[31] R. Wilson, et al., Encoded microcarriers for high-throughput multiplexed detection, Angew. Chem. Int. Ed. 45(2006) 6104-6117.[32] D.C. Pregibon, et al., Multifunctional encoded particles for high-throughput biomolecule analysis, Science 315(2007) 1393-1396.[33] X.H. Ji, et al., On-demand preparation of quantum dot-encoded microparticles using a dropletmicrofluidic system, Lab Chip 11(2011) 2561-2568.[34] M.Y. Han, et al., Quantum-dot-tagged microbeads for multiplexed optical coding of biomolecules, Nat. Biotechnol. 19(2001) 631-635.[35] J.H. Xu, et al., Preparation of monodispersed chitosan microspheres and in situ encapsulation of BSA in a co-axial microfluidic device, Biomed. Microdevices 11(2008) 243-249.[36] J.H. Xu, et al., A novel microfluidic approach for monodispersed chitosan microspheres with controllable structures, Adv. Healthcare Mater. 1(2012) 106-111.[37] M.R. Gandhi, et al., Preparation and characterization of silica gel/chitosan composite for the removal of Cu(Ⅱ) and Pb(Ⅱ), Int. J. Biol. Macromol. 50(2012) 650-657.[38] L. Yu, et al., Synthesis of monodisperse zeolite A/chitosan hybrid microspheres and binderless zeolite A microspheres, Ind. Eng. Chem. Res. 51(2012) 2299-2308.[39] H. Zhao, et al., Microfluidic production of porous chitosan/silica hybrid microspheres and its Cu(Ⅱ) adsorption performance, Chem. Eng. J. 229(2013) 82-89.[40] J.H. Xu, et al., Microfluidic preparation of chitosan microspheres with enhanced adsorption performance of copper(Ⅱ), Sensors Actuators B Chem. 183(2013) 201-210.[41] H. Zhao, et al., A novelmicrofluidic approach for preparing chitosan-silica core-shell hybridmicrospheres with controlled structures and their catalytic performance, Lab Chip 14(2014) 1901-1906.[42] H. Zhao, et al., Silica/chitosan core-shell hybrid-microsphere-supported CuI catalyst for terminal alkyne homocoupling reaction, Appl. Catal. A Gen. 502(2015) 188-194.[43] X.M. Xu, et al., Microfluidic preparation of chitosan-poly(acrylic acid) composite microspheres with a porous surface structure, RSC Adv. 4(2014) 37142-37147.[44] A. Fang, et al., Smart swelling biopolymermicroparticles by a microfluidic approach:synthesis, in situ encapsulation and controlled release, Colloids Surf. B Biointerfaces 82(2011) 81-86.[45] M. Marquis, et al., Microfluidic generation and selective degradation of biopolymerbased Janus microbeads, Biomacromolecules 13(2012) 1197-1203.[46] B. Maheswari, et al., Role of N-vinyl-2-pyrrolidinone on the thermoresponsive behavior of PNIPAm hydrogel and its release kinetics using dye and vitamin-B12 as model drug, J. Biomater. Sci. Polym. Ed. 25(2014) 269-286.[47] J. Wei, et al., Multi-stimuli-responsive microcapsules for adjustable controlled-release, Adv. Funct. Mater. 24(2014) 3312-3323.[48] B.L. Zhang, et al., Preparation of thermoresponsive Fe3O4/P(acrylic acid-methyl methacrylate-N-isopropylacrylamide) magnetic composite microspheres with controlled shell thickness and its releasing property for phenolphthalein, J. Colloid Interface Sci. 398(2013) 51-58.[49] Y. Chen, et al., Multicompartmental Janus microbeads from branched polymers by single-emulsion droplet microfluidics, Langmuir 29(2013) 12657-12662.[50] J. Jeong, et al., One-step preparation of magnetic Janus particles using controlled phase separation of polymer blends and nanoparticles, RSC Adv. 3(2013) 11801.[51] X.H. Ge, et al., Controlled stimulation-burst targeted release by smart decentered core-shell microcapsules in gravity and magnetic field, Lab Chip 14(2015) 4451-4454.[52] W.T. Wang, et al., The enhancement of liquid-liquid extraction with high phase ratio by microfluidic-based hollow droplet, RSC Adv. 5(100) (2015) 82056-82064. |