[1] M. Ramdin, T.W. De Loos, T.J.H. Vlugt, State-of-the-art of CO2 capture with ionic liquids, Ind. Eng. Chem. Res. 51(24) (2012) 8149-8177.[2] K. Huang, X.M. Zhang, Y.X. Li, Y.T.Wu, X.B. Hu, Facilitated separation of CO2 and SO2 through supported liquid membranes using carboxylate-based ionic liquids, J. Membr. Sci. 471(6) (2014) 227-236.[3] Y. Peng, Y. Li, Y. Ban, H. Jin,W. Jiao, X. Liu, W. Yang, Metal-organic framework nanosheets as building blocks for molecular sieving membranes, Science 346(6215) (2014) 1356-1359.[4] M.A. Malik, M.A. Hashim, F. Nabi, Ionic liquids in supported liquid membrane technology, Chem. Eng. J. 171(1) (2011) 242-254.[5] P. Uchytil, J. Schauer, R. Petrychkovych, K. Setnickova, S.Y. Suen, Ionic liquid membranes for carbon dioxide-methane separation, J. Membr. Sci. 383(s 1-2) (2011) 262-271.[6] J.E. Bara, T.K. Carlisle, C.J. Gabriel, D. Camper, A. Finotello, D.L. Gin, R.D. Noble, Guide to CO2 separations in imidazolium-based room-temperature ionic liquids, Ind. Eng. Chem. Res. 48(6) (2009) 2739-2751.[7] L.A. Blanchard, D. Hancu, E.J. Beckman, J.F. Brennecke, Green processing using ionic liquids and CO2, Nature 399(6731) (1999) 28-29.[8] S.H. Barghi, M. Adibi, D. Rashtchian, An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through[bmim] [PF6] ionic liquid supported on an alumina membrane:Investigation of temperature fluctuations effects, J. Membr. Sci. 362(1) (2010) 346-352.[9] P.T. Nguyen, B.A. Voss, E.F.Wiesenauer, D.L. Gin, R.D. Noble, Physically gelled roomtemperature ionic liquid-based composite membranes for CO2/N2 separation:Effect of composition and thickness on membrane properties and performance, Ind. Eng. Chem. Res. 52(26) (2013) 8812-8821.[10] T.C. Merkel, H. Lin, X. Wei, R. Baker, Power plant post-combustion carbon dioxide capture:An opportunity formembranes, J. Membr. Sci. 359(s 1-2) (2010) 126-139.[11] P. Scovazzo, A.E. Visser, J.H. Davis, R.D. Rogers, C.A. Koval, D.L. DuBois, R.D. Noble, Supported ionic liquid membranes and facilitated ionic liquid membranes, ChemInformWiley 2002, pp. 69-87.[12] P. Jindaratsamee, Y. Shimoyama, H.Morizaki, A. Ito, Effects of temperature and anion species on CO2 permeability and CO2/N2 separation coefficient through ionic liquid membranes, J. Chem. Thermodyn. 43(3) (2011) 311-314.[13] S. Hanioka, T. Maruyama, T. Sotani, M. Teramoto, H. Matsuyama, K. Nakashima, M. Hanaki, F. Kubota, M. Goto, CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane, J. Membr. Sci. 314(s 1-2) (2008) 1-4.[14] E.D. Bates, R.D. Mayton, N. Ioanna, J.H. Davis, CO2 capture by a task-specific ionic liquid, J. Am. Chem. Soc. 124(6) (2002) 926-927.[15] Q.P. Liu, X.D. Hou, N. Li, M.H. Zong, Ionic liquids from renewable biomaterials:Synthesis, characterization and application in the pretreatment of biomass, Green Chem. 14(2) (2012) 304-307.[16] M. Petkovic, K.R. Seddon, L.P. Rebelo, C. Silva Pereira, Ionic liquids:A pathway to environmental acceptability, Chem. Soc. Rev. 40(27) (2011) 1383-1403.[17] M.T. Garcia, N. Gathergood, P.J. Scammells, Biodegradable ionic liquids:Part Ⅱ. Effect of the anion and toxicology, Green Chem. 1(2005) 9-14.[18] J. Arning, S. Stolte, A. Böschen, F. Stock, W.R. Pitner, U.Welz-Biermann, B. Jastorff, J. Ranke, Qualitative and quantitative structure activity relationships for the inhibitory effects of cationic head groups, functionalised side chains and anions of ionic liquids on acetylcholinesterase, Green Chem. 10(1) (2008) 47-58.[19] D. Zhao, Y. Liao, Z. Zhang, Toxicity of ionic liquids, Clean-Soil Air Water 35(1) (2007) 42-48.[20] W. Xie, X. Ji,X. Feng, X. Lu,Mass-transfer rate enhancement for CO2 separation by ionic liquids:Theoretical study on the mechanism, AIChE J. 61(12) (2015) 4437-4444.[21] X. Lu, Y. Ji, X. Feng, X. Ji, Non-equilibrium thermodynamics analysis and its application in interfacial mass transfer, Sci. China Chem. 41(10) (2011) 1540-1547.[22] E. Santos, J. Albo, A. Irabien, Acetate based supported ionic liquid membranes (SILMs) for CO2 separation:Influence of the temperature, J. Membr. Sci. 452(4) (2014) 277-283.[23] Y. Zhang, X. Ji, Y. Xie, X. Lu, Screening of conventional ionic liquids for carbon dioxide capture and separation, Appl. Energy 162(2016) 1160-1170.[24] Y. Zhang, X. Ji, X. Lu, Energy consumption analysis for CO2 separation from gas mixtures, Appl. Energy 130(5) (2014) 237-243.[25] Y. Zhang, X. Ji, X. Lu, Properties and applications of choline chloride/urea and choline chloride/glycerol, Sci. China Chem. 44(6) (2014) 927-941.[26] X.D. Hou, Q.P. Liu, T.J. Smith, N. Li, M.H. Zong, Evaluation of toxicity and biodegradability of cholinium amino acids ionic liquids, PLoS One 8(3) (2013) e59145.[27] Sigma-Aldrich, http://www.sigmaaldrich.com/china-mainland.html.[28] X. Li, M. Hou, Z. Zhang, B. Han, G. Yang, X. Wang, L. Zou, Absorption of CO2 by ionic liquid/polyethylene glycol mixture and the thermodynamic parameters, Green Chem. 10(8) (2008) 879-884.[29] S. Hu, T. Jiang, Z. Zhang, A. Zhu, B. Han, J. Song, Y. Xie, W. Li, Functional ionic liquid from biorenewable materials:Synthesis and application as a catalyst in direct aldol reactions, Tetrahedron Lett. 48(2007) 5613-5617.[30] F.W.Wu, L. Li, Z.H. Xu, S.J. Tan, Z.B. Zhang, Transport study of pure and mixed gases through PDMS membrane, Chem. Eng. J. 117(1) (2006) 51-59.[31] D.J. Tao, Z. Cheng, F.F. Chen, Z.M. Li, N. Hu, X.S. Chen, Synthesis and thermophysical properties of biocompatible cholinium-based amino acid ionic liquids, J. Chem. Eng. Data 58(6) (2013) 1542-1548.[32] S. Kasahara, E. Kamio, H.Matsuyama, Improvements in the CO2 permeation selectivities of amino acid ionic liquid-based facilitated transportmembranes by controlling their gas absorption properties, J. Membr. Sci. 454(6) (2014) 155-162.[33] N. Shahkaramipour, M. Adibi, A.A. Seifkordi, Y. Fazli, Separation of CO2/CH4 through alumina-supported geminal ionic liquid membranes, J. Membr. Sci. 455(4) (2014) 229-235.[34] Y. Demirel, S.I. Sandler, Nonequilibrium thermodynamics in engineering and science, J. Phys. Chem. B 108(1) (2003) 31-43.[35] X. Lu, Y. Ji, X. Feng, X. Ji, Methodology of non-equilibrium thermodynamics for kinetics research of CO2 capture by ionic liquids, Sci. China Chem. 55(6) (2012) 1079-1091.[36] H. Liu, H. Tian, H. Yao, D. Yu, W. Zhao, X. Bai, Improving physical absorption of carbon dioxide by ionic liquid dispersion, Chem. Eng. Technol. 36(8) (2013) 1402-1410.[37] D.Morgan, L. Ferguson, P. Scovazzo, Diffusivities of gases in room-temperature ionic liquids:data and correlations obtained using a lag-time technique, Ind. Eng. Chem. Res. 44(13) (2005) 4815-4823.[38] L. Ferguson, P. Scovazzo, Solubility, diffusivity, and permeability of gases in phosphonium-based room temperature ionic liquids:Data and correlations, Ind. Eng. Chem. Res. 46(4) (2007) 1369-1374.[39] L.M. Robeson, The upper bound revisited, J. Membr. Sci. 320(s 1-2) (2008) 390-400.[40] R. Condemarin, P. Scovazzo, Gas permeabilities, solubilities, diffusivities, and diffusivity correlations for ammonium-based room temperature ionic liquids with comparison to imidazolium and phosphonium RTIL data, Chem. Eng. J. 147(1) (2009) 51-57.[41] P. Scovazzo, Determination of the upper limits, benchmarks, and critical properties for gas separations using stabilized room temperature ionic liquid membranes (SILMs) for the purpose of guiding future research, J. Membr. Sci. 343(s 1-2) (2009) 199-211. |