[1] Q.L. Ge, X.P. Yue, G.Y. Wang, Simultaneous heterotrophic nitrification and aerobic denitrification at high initial phenol concentration by isolated bacterium Diaphorobacter sp PD-7, Chin. J. Chem. Eng. 23(5) (2015) 835-841. [2] F. Shahrezaei, Y. Mansouri, A.A.L. Zinatizadeh, A. Akhbari, Process modeling and kinetic evaluation of petroleum refinery wastewater treatment in a photocatalytic reactor using TiO2 nanoparticles, Powder Technol. 221(2012) 203-212. [3] P. Górska, A. Zaleska, J. Hupka, Photodegradation of phenol by UV/TiO2 and Vis/N,CTiO2 processes:Comparative mechanistic and kinetic studies, Sep. Purif. Technol. 68(1) (2009) 90-96. [4] J. Wang, H. Ruan, W. Li, D. Li, Y. Hu, J. Chen, Y. Shao, Y. Zheng, Highly efficient oxidation of gaseous benzene on novel Ag3VO4/TiO2 nanocomposite photocatalysts under visible and simulated solar light irradiation, J. Phys. Chem. C 116(26) (2012) 13935-13943. [5] J.A.O. Méndez, J.A.H. Melián, J. Araña, J.M.D. Rodríguez, O.G. Díaz, J.P. Peña, Detoxification of waters contaminated with phenol, formaldehyde and phenol-formaldehyde mixtures using a combination of biological treatments and advanced oxidation techniques, Appl. Catal. B Environ. 163(2015) 63-73. [6] J. Lim, D. Monllor-Satoca, J.S. Jang, S. Lee, W. Choi, Visible light photocatalysis of fullerol-complexed TiO2 enhanced by Nb doping, Appl. Catal. B Environ. 152-153(2014) 233-240. [7] B. Li, K. Sun, Y. Guo, J. Tian, Y. Xue, D. Sun, Adsorption kinetics of phenol from water on Fe/AC, Fuel 110(2013) 99-106. [8] M. Eiroa, A. Vilar, C. Kennes, M.C. Veiga, Effect of phenol on the biological treatment of wastewaters from a resin producing industry, Bioresour. Technol. 99(9) (2008) 3507-3512. [9] H. Ling, K. Kim, Z. Liu, J. Shi, X. Zhu, J. Huang, Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles, Catal. Today 258(2015) 96-102. [10] F. He, J. Li, T. Li, G. Li, Solvothermal synthesis of mesoporous TiO2:The effect of morphology, size and calcination progress on photocatalytic activity in the degradation of gaseous benzene, Chem. Eng. J. 237(2014) 312-321. [11] J. Cheng, J. Chen, W. Lin, Y. Liu, Y. Kong, Improved visible light photocatalytic activity of fluorine and nitrogen co-doped TiO2 with tunable nanoparticle size, Appl. Surf. Sci. 332(2015) 573-580. [12] Y. Fang, D. Cheng, W. Wu, Understanding electronic and optical properties of N-Sn codoped anatase TiO2, Comput. Mater. Sci. 85(2014) 264-268. [13] J. Wang, Q. Meng, J. Huang, Q. Li, J. Yang, Band structure engineering of anatase TiO2 by metal-assisted P-O coupling, J. Chem. Phys. 140(17) (2014) 174705. [14] G. Song, Z. Chu, W. Jin, H. Sun, Enhanced performance of g-C3N4/TiO2 photocatalysts for degradation of organic pollutants under visible light, Chin. J. Chem. Eng. 23(8) (2015) 1326-1334. [15] E.S. Agorku, B.B. Mamba, A.C. Pandey, A.K. Mishra, Sulfur/gadolinium-codoped TiO2 nanoparticles for enhanced visible-light photocatalytic performance, J. Nanomater. (2014). [16] H.Q. Wang, X.M. Li, C.R. Xiong, S.Y. Gao, J. Wang, Y. Kong, One-pot synthesis of ironcontaining nanoreactors with controllable catalytic activity based on multichannel mesoporous silica, ChemCatChem 7(23) (2015) 3855-3864. [17] B. Han, X. Shi, Y. Zhang, Q. Kong, Q. Sun, Y. Kong, Influences of pore sizes on the catalytic activity of Fe-MCM-41 in hydroxylation of phenol, Asian J. Chem. 25(16) (2013) 9087-9091. [18] C. Wu, Y. Kong, F. Gao, Y. Wu, Y. Lu, J. Wang, L. Dong, Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content, Microporous Mesoporous Mater. 113(1-3) (2008) 163-170. [19] Q. Sun, W. Leng, Z. Li, Y. Xu, Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water, J. Hazard. Mater. 229(2012) 224-232. [20] J.J. Murcia, M.C. Hidalgo, J.A. Navío, J. Araña, J.M. Doña-Rodríguez, Study of the phenol photocatalytic degradation over TiO2 modified by sulfation, fluorination, and platinum nanoparticles photodeposition, Appl. Catal. B Environ. 179(2015) 305-312. [21] Y.N. Tan, C.L. Wong, A.R. Mohamed, Hydrothermal treatment of fluorinated titanium dioxide:Photocatalytic degradation of phenol, Asia Pac. J. Chem. Eng. 7(6) (2012) 877-885. [22] J.K. Zhou, L. Lv, J.Q. Yu, H.L. Li, P.Z. Guo, H. Sun, X.S. Zhao, Synthesis of self-organized polycrystalline F-doped TiO2 hollow microspheres and their photocatalytic activity under visible light, J. Phys. Chem. C 112(14) (2008) 5316-5321. [23] H. Kim, W. Choi, Effects of surface fluorination of TiO2 on photocatalytic oxidation of gaseous acetaldehyde, Appl. Catal. B Environ. 69(3-4) (2007) 127-132. [24] Y. Zhang, F. Lv, T. Wu, L. Yu, R. Zhang, B. Shen, X. Meng, Z. Ye, P.K. Chu, F and Fe codoped TiO2 with enhanced visible light photocatalytic activity, J. Sol-Gel Sci. Technol. 59(2) (2011) 387-391. [25] X. Wang, R. Yu, P. Wang, F. Chen, H. Yu, Co-modification of F- and Fe(III) ions as a facile strategy towards effective separation of photogenerated electrons and holes, Appl. Surf. Sci. 351(2015) 66-73. [26] C. Adana, A. Bahamonde, I. Oller, S. Malato, A. Martinez-Arias, Influence of iron leaching and oxidizing agent employed on solar photodegradation of phenol over nanostructured iron-doped titania catalysts, Appl. Catal. B Environ. 144(2014) 269-276. [27] J. Li, J. Xu, W.-L. Dai, H. Li, K. Fan, One-pot synthesis of twist-like helix tungsten-nitrogen-codoped titania photocatalysts with highly improved visible light activity in the abatement of phenol, Appl. Catal. B Environ. 82(3-4) (2008) 233-243. [28] W. Yu, X. Liu, L. Pan, J. Li, J. Liu, J. Zhang, P. Li, C. Chen, Z. Sun, Enhanced visible light photocatalytic degradation of methylene blue by F-doped TiO2, Appl. Surf. Sci. 319(2014) 107-112. [29] N.R. Mathews, M.A. Cortes Jacome, C. Angeles-Chavez, J.A. Toledo Antonio, Fe doped TiO2 powder synthesized by sol gel method:Structural and photocatalytic characterization, J. Mater. Sci. Mater. Electron. 26(8) (2014) 5574-5584. [30] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(8) (2008) 2441-2449. [31] Y. Wang, S. Wang, H. Zhang, X. Gao, J. Yang, L. Wang, Brookite TiO2 decorated α-Fe2O3 nanoheterostructures with rod morphologies for gas sensor application, J. Mater. Chem. A 2(21) (2014) 7935. [32] Y. Niu, M. Xing, J. Zhang, B. Tian, Visible light activated sulfur and iron co-doped TiO2 photocatalyst for the photocatalytic degradation of phenol, Catal. Today 201(2013) 159-166. [33] J.-Q. Li, D.-F. Wang, Z.-Y. Guo, Z.-F. Zhu, Preparation, characterization and visiblelight-driven photocatalytic activity of Fe-incorporated TiO2 microspheres photocatalysts, Appl. Surf. Sci. 263(2012) 382-388. [34] X. Xiong, Y. Xu, Synergetic effect of Pt and borate on the TiO2-photocatalyzed degradation of phenol in water, J. Phys. Chem. C 120(7) (2016) 3906-3912. [35] Q. Sun, W. Leng, Z. Li, Y. Xu, Effect of surface Fe2O3 clusters on the photocatalytic activity of TiO2 for phenol degradation in water, J. Hazard. Mater. 229-230(2012) 224-232. [36] H. Zhang, L.-H. Guo, D. Wang, L. Zhao, B. Wan, Light-induced efficient molecular oxygen activation on a Cu(II)-grafted TiO2/graphene photocatalyst for phenol degradation, ACS Appl. Mater. Interfaces 7(3) (2015) 1816-1823. [37] S.H. Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, Investigation of photocatalytic degradation of phenol by Fe(III)-doped TiO2 and TiO2 nanoparticles, J. Environ. Health Sci. Eng. 12(2014). [38] Y. Yao, F. Lu, Y. Zhu, F. Wei, X. Liu, C. Lian, S. Wang, Magnetic core-shell CuFe2O4@C3N4 hybrids for visible light photocatalysis of Orange II, J. Hazard. Mater. 297(2015) 224-233. [39] Z. Guo, R. Ma, G. Li, Degradation of phenol by nanomaterial TiO2 in wastewater, Chem. Eng. J. 119(1) (2006) 55-59. [40] C.-H. Chiou, C.-Y. Wu, R.-S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process, Chem. Eng. J. 139(2) (2008) 322-329. [41] A. Adak, A. Pal, M. Bandyopadhyay, Removal of phenol from water environment by surfactant-modified alumina through adsolubilization, Colloids Surf. A Physicochem. Eng. Asp. 277(1-3) (2006) 63-68. [42] N. Kashif, F. Ouyang, Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2, J. Environ. Sci. 21(4) (2009) 527-533. [43] A.A. Yawalkar, D.S. Bhatkhande, V.G. Pangarkar, A. Beenackers, Solar-assisted photochemical and photocatalytic degradation of phenol, J. Chem. Technol. Biotechnol. 76(4) (2001) 363-370. |