[1] R. Walker, Chemical reaction and diffusion in a catalytic tubular reactor, Phys. Fluids 4(2004) 1211-1216. [2] E. Nauman, Polymerization Reactor Design Polymer Reactor Engineering, 1, Springer, 1994125-147. [3] I. Banu, Modeling and Optimization of Tubular Polymerization Reactors, Université Claude Bernard-Lyon I, 2009. [4] S. Lynn, J.E. Huff, Polymerization in a tubular reactor, AICHE J. 17(1971) 475-481. [5] C. Chen, E. Nauman, Verification of a complex variable viscosity model for a tubular polymerization reactor, Chem. Eng. Sci. 44(1989) 179-188. [6] M. Ghosh, D. Foster, J. Lencyzyk, T. Forsyth, A model of a tubular reactor for the continuous polymerization of styrene:experiments at low molecular weight, AIChE Symp. Ser. 2(1976) 134-147. [7] B.M. Louie, G.M. Carratt, D.S. Soong, Modeling the free radical solution and bulk polymerization of methyl methacrylate, J. Appl. Polym. Sci. 30(1985) 3985-4012. [8] P.E. Baillagou, D.S. Soong, Free radical polymerization of methyl methacrylate in tubular reactors, Polym. Eng. Sci. 25(1985) 212-231. [9] P.A. Fleury, T. Meyer, A. Renken, Solution polymerization of methyl-methacrylate at high conversion in a recycle tubular reactor, Chem. Eng. Sci. 47(1992) 2597-2602. [10] S. Fan, S. Gretton-Watson, J. Steinke, E. Alpay, Polymerization of methyl methacrylate in a pilot-scale tubular reactor:Modelling and experimental studies, Chem. Eng. Sci. 58(2003) 2479-2490. [11] M. Scorah, R. Dhib, A. Penlidis, Modeling of free radical polymerization of styrene and methyl methacrylate by a tetra functional initiator, Chem. Eng. Sci. 61(2006) 4827-4859. [12] P. Baillagou, D. Soong, Molecular weight distribution of products of free radical non isothermal polymerization with gel effect simulation for polymerization of poly(methyl methacrylate), Chem. Eng. Sci. 40(1985) 87-104. [13] J. Pinto, W. Ray, The dynamic behavior of continuous solution polymerization reactors-VII. Experimental study of a copolymerization reactor, Chem. Eng. Sci. 50(1995) 715-736. [14] A. Tobolsky, B. Baysal, A review of rates of initiation in vinyl polymerization:styrene and methyl methacrylate, J. Polym. Sci. 11(1953) 471-486. [15] N. Tefera, G. Weickert, K. Westerterp, Modeling of free radical polymerization up to high conversion. II. Development of a mathematical model, J. Appl. Polym. Sci. 63(1997) 1663-1680. [16] R.H. Perry, D.W. Green, J.O. Maloney, Perry's Chemical Engineer's Handbook, McGraw-Hill Book, 1984. [17] P. Baillagou, D. Soong, Major factors contributing to the nonlinear kinetics of freeradical polymerization, Chem. Eng. Sci. 40(1985) 75-86. [18] M. Soroush, C. Kravaris, Nonlinear control of a batch polymerization reactor:an experimental study, AICHE J. 38(1992) 1429-1448. [19] E.B. Nauman, Chemical Reactor Design, Optimization, and Scaleup, Wiley, New York, 2008. [20] O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, 1972. [21] R. Bird, W. Stewart, E. Lightfoot, Transport Phenomena, Wiley, New York, 1960. [22] C. Wyman, L. Carter, A numerical model for tubular polymerization reactors, AIChE Symp. Ser. 3(1976) 1-16. [23] J.S. Vrentas, J.L. Duda, Diffusion in polymer-solvent systems. III. Construction of Deborah number diagrams, J. Polym. Sci. 15(1977) 441-453. [24] J.S. Vrentas, J.L. Duda, Molecular diffusion in polymer solutions, AIChE J. 25(1979) 1-24. [25] W.C. Chen, S.J. Lee, B.C. Ho, Diffusion coefficients of acrylic monomers in poly(methyl methacrylate), J. Polym. Res. 5(1998) 187-191. [26] L.S. Merrill, C.E. Hamrin, Conversion and temperature profiles for complex reactions in laminar and plug flow, AIChE J. 16(1970) 194-198. [27] R.P. Chhabra, J.F. Richardson, Non-Newtonian Flow:Fundamentals and Engineering Applications, Butterworth-Heinemann, 1999. |