[1] R.J. Santos, M.M. Dias, J.C.B. Lopes, Mixing through half a century of chemical engi neering, in:R. Dias, R. Lima, A.A. Martins, T.M. Mata (Eds.), Chapter 4 in Single and Two-phase Flows on Chemical and Biomedical Engineering, Bentham Science Publishers 2012, pp. 79-112. [2] J. Baldyga, J.R. Bourne, Turbulent Mixing and Chemical Reactions, Wiley, New York, 1999. [3] J. Villermaux, R. David, Recent advances in the understanding of micromixing phenomena in stirred reactors, Chem. Eng. Commun. 21(1-3) (1983) 105-122. [4] R.O. Fox, Computational Models for Turbulent Reacting Flows, Cambridge University Press, Cambridge, 2003. [5] J.C. Cheng, X. Feng, D. Cheng, C. Yang, Retrospect and perspective of micro-mixing studies in stirred tanks, Chin. J. Chem. Eng. 20(1) (2012) 178-190. [6] P. Guichardon, L. Falk, M. Andrieu, Experimental comparison of the iodide-iodate and the diazo coupling micromixing test reactions in stirred reactors, Chem. Eng. Res. Des. 79(8) (2001) 906-914. [7] J.R. Bourne, Comments on the iodide/iodate method for characterising micromixing, Chem. Eng. J. 140(1) (2008) 638-641. [8] A. Kölbl, S. Schmidt-Lehr, The iodide iodate reaction method:The choice of the acid, Chem. Eng. Sci. 65(5) (2010) 1897-1901. [9] H. Unadkat, Z.K. Nagy, C.D. Rielly, Investigation of turbulence modulation in solid-liquid suspensions using parallel competing reactions as probes for micro-mixing efficiency, Chem. Eng. Res. Des. 91(11) (2013) 2179-2189. [10] J.R. Bourne, S.Y. Yu, Investigation of micromixing in stirred tank reactors using parallel reactions, Ind. Eng. Chem. Res. 33(1) (1994) 41-56. [11] M.C. Fournier, L. Falk, J. Villermaux, A new parallel competing reaction system for assessing micromixing efficiency-Experimental approach, Chem. Eng. Sci. 51(22) (1996) 5053-5064. [12] G.W. Chu, Y.H. Song, J.M. Chen, H.J. Yang, H. Chen, J.F. Chen, Modified expression of segregation index for iodide-iodate reaction system, J. Chem. Ind. Eng. China 56(10) (2005) 1856-1859(in Chinese). [13] C. Habchi, T. Lemenand, D.D. Valle, M. Khaled, A. Elmarakbi, H. Peerhossaini, Mixing assessment by chemical probe, J. Ind. Eng. Chem. 20(4) (2014) 1411-1420. [14] J.R. Bourne, F. Kozicki, P. Rys, Mixing and fast chemical reaction. I. Test reactions to determine segregation, Chem. Eng. Sci. 36(10) (1981) 1643-1648. [15] K. Kling, D. Mewes, Two-colour laser induced fluorescence for the quantification of micro-and macromixing in stirred vessels, Chem. Eng. Sci. 59(7) (2004) 1523-1528. [16] A. Lehwald, D. Thévenin, K. Zähringer, Quantifying macro-mixing and micro-mixing in a static mixer using two-tracer laser-induced fluorescence, Exp. Fluids 48(5) (2010) 823-836. [17] A. Lehwald, G. Janiga, D. Thévenin, Zähringer, Simultaneous investigation of macroand micro-mixing in a static mixer, Chem. Eng. Sci. 79(10) (2012) 8-18. [18] K.W. Mao, H.L. Toor, A diffusion model for reactions with turbulent mixing, AIChE J. 16(1) (1970) 49-52. [19] J.M. Ottino, W.E. Ranz, C.W. Macosko, A lamellar model for analysis of liquid-liquid mixing, Chem. Eng. Sci. 34(1979) 877-890. [20] J. Baldyga, J.R. Bourne, A fluid mechanical approach to turbulent mixing and chemical reaction. Part Ⅱ. Micromixing in the light of turbulence theory, Chem. Eng. Commun. 28(1984) 243-258. [21] X. Li, G.T. Chen, S.X. Rong, Studies on micromixing (Ⅲ). Morphology and deformation of materials in the meso-scale, Chem. React. Eng. Technol. 6(4) (1990) 15-22(in Chinese). [22] X. Li, G.T. Chen, Simplified framework for description of mixing with chemical reactions. Ⅱ. Chemical reactions in the different mixing regions, Chin. J. Chem. Eng. 4(4) (1996) 322-332. [23] R.A. Bakker, H.E.A. van den Akker, A cylindrical stretching vortex model of micromixing in chemical reactors, 8th European Conference on Mixing, IChemE Symp. Series, 136, Cambridge, England 1994, pp. 275-282. [24] R.A. Bakker, H.E.A. van den Akker, A Lagrangian description of micromixing in a stirred tank reactor using 1D-micromixing models in a CFD flow field, Chem. Eng. Sci. 51(11) (1996) 2643-2648. [25] J. Baldyga, J.R. Bourne, Simplification of micromixing calculations. I. Derivation and application of new model, Chem. Eng. J. 42(1989) 83-92. [26] W. Angst, J.R. Bourne, R.N. Sharma, Mixing and fast chemical reaction-IV. The dimensions of the reaction zone, Chem. Eng. Sci. 37(1982) 585-590. [27] S.B. Pope, Turbulent Flows, Cambridge University Press, Cambridge, 2000. [28] J.Baldyga,L.Makowski,CFDmodellingofmixingeffectsonthecourseofparallelchemical reactions carried out in a stirred tank, Chem. Eng. Technol. 27(3) (2004) 225-231. [29] Y. Han, J.J. Wang, X.P. Gu, L.F. Feng, Numerical simulation on micromixing of viscous fluids in a stirred-tank reactor, Chem. Eng. Sci. 74(2012) 9-17. [30] X.X. Duan, X. Feng, C. Yang, Z.-S. Mao, Numerical simulation of micro-mixing in stirred reactors using the engulfment model coupled with CFD, Chem. Eng. Sci. 140(2016) 179-188. [31] O. Akiti, P.M. Armenante, Experimentally-validated micromixing-based CFD model for fed-batch stirred-tank reactors, AIChE J. 50(3) (2004) 566-577. [32] A. Brucato, M. Ciofalo, F. Grisafi, R. Tocco, On the simulation of stirred tank reactors via computational fluid dynamics, Chem. Eng. Sci. 55(2) (2000) 291-303. [33] J. Baldyga, W. Orciuch, Closure problem for precipitation, Chem. Eng. Res. Des. 75(A2) (1997) 160-170. [34] J. Baldyga, W. Orciuch, Barium sulphate precipitation in a pipe-An experimental study and CFD modeling, Chem. Eng. Sci. 56(7) (2001) 2435-2444. [35] D. Piton, R.O. Fox, B. Marcant, Simulation of fine particle formation by precipitation using computational fluid dynamics, Can. J. Chem. Eng. 78(5) (2000) 983-993. [36] D.L. Marchisio, A.A. Barresi, R.O. Fox, Simulation of turbulent precipitation in a semibatch Taylor-Couette reactor using CFD, AIChE J. 47(3) (2001) 664-676. [37] D.L. Marchisio, R.O. Fox, A.A. Barresi, On the simulation of turbulent precipitation in a tubular reactor via computational fluid dynamics (CFD), Chem. Eng. Res. Des. 79(A8) (2001) 998-1004. [38] Q.H. Zhang, Z.S. Mao, C. Yang, C.J. Zhao, Numerical simulation of barium sulphate precipitation process in a continuous stirred tank with multiple-time-scale turbulent mixer model, Ind. Eng. Chem. Res. 48(1) (2009) 424-429. [39] D.L. Marchisio, A.A. Barresi, CFD simulation of mixing and reaction:The relevance of the micro-mixing model, Chem. Eng. Sci. 58(2003) 3579-3587. [42] A.A. Öncül, G. Janiga, D. Thévenin, Comparison of various micromixing approaches for computational fluid dynamics simulation of barium sulfate precipitation in tubular reactors, Ind. Eng. Chem. Res. 48(2009) 999-1007. [40] Z. Wang, Q.H. Zhang, C. Yang, Z.-S. Mao, X.Q. Shen, Simulation of barium sulfate precipitation using CFD and FM-PDF modeling in a continuous stirred tank, Chem. Eng. Technol. 30(12) (2007) 1642-1649. [41] Z. Wang, Z.S. Mao, C. Yang, X.Q. Shen, CFD approach to the effect of mixing and draft tube on the precipitation of barium sulfate in a continuous stirred tank, Chin. J. Chem. Eng. 14(6) (2006) 713-722. [43] K.T. Yu, X.G. Yuan, Introduction to Computational Mass Transfer-With Applications to Chemical Engineering, Springer, Heidelberg, 2014. [44] J.R. Bourne, H.L. Toor, Simple criteria for mixing effects in complex reactions, AIChE J. 23(4) (1977) 602-604. [45] J. Baldyga, A closure model for homogeneous chemical reactions, Chem. Eng. Sci. 49(12) (1994) 1985-2003. [46] K.W. Mao, H.L. Toor, Second-order chemical reactions with turbulent mixing, Ind. Eng. Chem. Fundam. 10(2) (1971) 192-197. [47] Y.Q. Zhang, Z.S. Mao, J.Y. Chen, Interfacial kinetics of biphasic hydroformylation of 1-dodecene catalyzed by water-soluble rhodium complex by a combined numerical and experimental approach, Ind. Eng. Chem. Res. 40(21) (2001) 4496-4505. [48] D. Cheng, X. Feng, C. Yang, J.C. Cheng, Z.-S. Mao, Experimental study on micromixing in a single-feed semibatch precipitation process in a gas-liquid-liquid stirred reactor, Ind. Eng. Chem. Res. 53(48) (2014) 18420-18429. [49] Z.H. Li, H.A. Luo, J. Wu, X. Yuan, Nitrosation kinetics of cyclohexane-carboxylic acid with nitrosyl sulfuric acid, J. Chem. Ind. Eng. China 56(6) (2005) 1015-1019(in Chinese). [50] Z.-S. Mao, J.Y. Chen, 2012. Numerical approach to the motion and external mass transfer of a drop swarm by the cell model, International Solvent Extraction Conference (ISEC'2002) 2002, pp. 227-232(Cape Town, South Africa). |