[1] E.A. Tomic, Thermal stability of coordination polymers, J. Appl. Polym. Sci. 9(1965) 3745-3752. [2] H. Li, M. Eddaoudi, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature 402(1999) 276-279. [3] H. Furukawa, O.M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc. 131(25) (2009) 8875-8883. [4] D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, PNAS 105(2008) 11623-11627. [5] H. Wu, W. Zhou, T. Yildirim, High-capacity methane storage in metal-organic frameworks M2(dhtp):The important role of open metal sites, J. Am. Chem. Soc. 131(13) (2009) 4995-5000. [6] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou, Potential applications of metal-organic frameworks, Coord. Chem. Rev. 253(2009) 3042-3066. [7] J.R. Long, O.M. Yaghi, The pervasive chemistry of metal-organic frameworks, Chem. Soc. Rev. 38(2009) 1213-1214. [8] P. Chowdhury, C. Bikkina, S. Gumma, Gas adsorption properties of the chromiumbased metal organic framework MIL-101, J. Phys. Chem. C 113(2009) 6616-6621. [9] U. Mueller, M. Schubert, F. Teich, H. Puetter, K. Schierle-Arndt, J. Pastre, Metal-organic frameworks-Prospective industrial applications, J. Mater. Chem. 16(2006) 626-636. [10] R. Sabouni, H. Kazemian, S. Rohani, A novel combined manufacturing technique for rapid production of IRMOF-1 using ultrasound and microwave energies, Chem. Eng. J. 165(2010) 966-973. [11] C.M. Lu, J. Liu, K. Xiao, A.T. Harris, Microwave enhanced synthesis of MOF-5 and its CO2 capture ability at moderate temperatures across multiple capture and release cycles, Chem. Eng. J. 156(2010) 465-470. [12] A.F.P. Ferreira, J. Santos, M.G. Plaza, N. Lamia, J.M. Loureiro, A.E. Rodrigues, Suitability of Cu-BTC extrudates for propane-propylene separation by adsorption processes, Chem. Eng. J. 167(2011) 1-12. [13] A.R. Millward, O.M. Yaghi, Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature, J. Am. Chem. Soc. 127(2005) 17998-17999. [14] R.E. Morris, P.S. Wheatley, Gas storage in nanoporous materials, Angew. Chem. Int. Ed. 47(2008) 4966-4981. [15] L.G. Qiu, L.N. Gu, G. Hu, L. Zhang, Synthesis, structural characterization and selectively catalytic properties of metal-organic frameworks with nano-sized channels:A modular design strategy, J. Solid State Chem. 182(2009) 502-508. [16] S. Wang, Q. Yang, C. Zhong, Adsorption and separation of binary mixtures in a metal-organic framework Cu-BTC:A computational study, Sep. Purif. Technol. 60(2008) 30-35. [17] Y. Li, R.T. Yang, Gas adsorption and storage in metal-organic framework MOF-177, Langmuir 23(2007) 12937-12944. [18] D. Tranchemontagne, J.R. Hunt, O.M. Yaghi, Room temperature synthesis of metal-organic frameworks:MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0, Tetrahedron 64(2008) 8553-8557. [19] S. Kitagawa, R. Kitaura, S. Noro, Functional porous coordination polymers, Angew. Chem. Int. Ed. 43(2004) 2334-2375. [20] J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks:A new class of porous materials, Microporous Mesoporous Mater. 73(2004) 3-14. [21] S. Li, F. Huo, Metal-organic framework composites:From fundamentals to applications, Nanoscale 7(2015) 7482-7501. [22] M. Bastos-Neto, D.V. Canabrava, A.E.B. Torres, E. Rodriguez-Castellon, A. JimenezLopez, D.C.S. Azevedo, C.L. CavalcanteJr, Effects of textural and surface characteristics of microporous activated carbons on the methane adsorption capacity at high pressures, Appl. Surf. Sci. 253(2007) 5721-5725. [23] D. Lozano-Castello, D. Cazorla-Amoros, A. Linares-Solano, D.F. Quinn, Influence of pore size distribution on methane storage at relatively low pressure:Preparation of activated carbon with optimum pore size, Carbon 40(2002) 989-1002. [24] D. Lozano-Castello, J. Alcaniz-Monge, M.A. de la Casa-Lillo, D. Cazorla-Amoros, A. Linares-Solano, Advances in the study of methane storage in porous carbonaceous materials, Fuel 81(2002) 1777-1803. [25] D. Saha, S. Deng, Z. Yang, Hydrogen adsorption on metal-organic framework (MOF-5) synthesized by DMF approach, J. Porous. Mater. 16(2) (2009) 141-149. [26] P. Kowalczyk, M. Jaroniec, A.P. Terzyk, K. Kaneko, D.D. Do, Improvement of the Derjaguin-Broekhoff-de Boer theory for capillary condensation/evaporation of nitrogen in mesoporous systems and its implications for pore size analysis of MCM-41 silicas and related materials, Langmuir 21(2005) 1827-1833. [27] O. Solcova, L. Matêjová, P. Schneider, Pore-size distributions from nitrogen adsorption revisited:Models comparison with controlled-pore glasses, Appl. Catal. A Gen. 313(2006) 167-176. [28] M. Kruk, M. Jaroniec, A. Sayari, Relations between pore structure parameters and their implications for characterization of MCM-41 using gas adsorption and X-ray diffraction, Chem. Mater. 11(1999) 492-500. [29] M. Kruk, M. Jaroniec, Y. Sakamoto, O. Terasaki, R. Ryoo, C.H. Ko, Determination of pore size and pore wall structure of MCM-41 by using nitrogen adsorption, transmission electron microscopy, and X-ray diffraction, J. Phys. Chem. B 104(2000) 292-301. [30] A.P. Radlinski, M. Mastalerz, A.L. Hinde, M. Hainbuchner, H. Rauch, M. Baron, J.S. Lin, L. Fan, P. Thiyagarajan, Application of SAXS and SANS in evaluation of porosity, pore size distribution and surface area of coal, Int. J. Coal Geol. 59(2004) 245-271. [31] E. Huang, M.F. Toney, W. Volksen, D. Mecerreyes, P. Brock, H.-C. Kim, C.J. Hawker, J.L. Hedrick, V.Y. Lee, T. Magbitang, R.D. Miller, Pore size distributions in nanoporous methyl silsesquioxane films as determined by small angle x-ray scattering, Appl. Phys. Lett. 81(2002) 2232-2234. [32] R. Schmidt, E.W. Hansen, M. StiScker, D. Akporiaye, O.H. Ellestad, Pore size determination of MCM-41 mesoporous materials by means of 1H NMR spectroscopy, N2 adsorption, and HREM. A preliminary study, J. Am. Chem. Soc. 117(1995) 4049-4056. [33] K. Kaneko, Determination of pore size and pore size distribution 1. Adsorbents and catalysts, J. Membr. Sci. 96(1994) 59-89. [34] C. Tsao, M. Yu, T. Chung, H. Wu, C. Wang, K. Chang, H. Chen, Characterization of pore structure in metal-organic framework by small-angle X-ray scattering, J. Am. Chem. Soc. 129(2007) 15997-16004. [35] E.P. Barrett, L.G. Joyner, P.P. Halenda, The determination of pore volume and area distributions in porous substances. I. Computation from nitrogen isotherms, J. Am. Chem. Soc. 73(1951) 373-380. [36] G. Horvath, K. Kawazoe, Method for the calculation of effective pore size distribution in molecular sieve carbon, J. Chem. Eng. Jpn 16(1983) 470-475. [37] M. Kruk, M. Jaroniec, A. Sayari, Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements, Langmuir 13(1997) 6267-6273. [38] C. Nguyen, D.D. Do, A new method for the characterization of porous materials, Langmuir 15(1999) 3608-3615. [39] Z. Ryu, J. Zheng, M. Wang, B. Zhang, Characterization of pore size distributions on carbonaceous adsorbents by DFT, Carbon 37(1999) 1257-1264. [40] J.C.P. Broekhoff, J.H. de Boer, Studies on pore systems in catalysts:IX. Calculation of pore distributions from the adsorption branch of nitrogen sorption isotherms in the case of open cylindrical pores A. Fundamental equations, J. Catal. 9(1967) 8-14. [41] Z. Bao, L. Yu, Q. Ren, X. Lu, S. Deng, Adsorption of CO2 and CH4 on a magnesiumbased metal organic framework, J. Colloid Interface Sci. 353(2011) 549-556. [42] D. Xuan-Dong, H. Vinh-Thang, S. Kaliaguine, MIL-53(Al) mesostructured metal-organic frameworks, Microporous Mesoporous Mater. 141(2011) 135-139. [43] B. Liu, H. Shioyama, H. Jiang, X. Zhang, Q. Xu, Metal-organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor, Carbon 48(2010) 456-463. [44] F. Shi, M. Hammoud, L.T. Thompson, Selective adsorption of dibenzothiophene by functionalized metal organic framework sorbents, Appl. Catal. B Environ. 103(2011) 261-265. [45] D. Saha, Z. Wei, S. Deng, Equilibrium, kinetics and enthalpy of hydrogen adsorption in MOF-177, Int. J. Hydrog. Energy 33(2008) 7479-7488. [46] B. Mu, P.M. Schoenecker, K.S. Walton, Gas adsorption study on mesoporous metal-organic framework UMCM-1, J. Phys. Chem. C 114(2010) 6464-6471. [47] A. Shahsavand, M. Niknam Shahrak, Direct pore size distribution estimation of heterogeneous nano-structured solid adsorbents from condensation data:Condensation with no prior adsorption, Colloids Surf. A Physicochem. Eng. Asp. 378(2011) 1-13. [48] A. Shahsavand, M. Niknam Shahrak, Reliable prediction of pore size distribution for nano-sized adsorbents with minimum information requirements, Chem. Eng. J. 171(2011) 69-80. [49] D. Saha, S. Deng, Synthesis, characterization and hydrogen adsorption in mixed crystals of MOF-5 and MOF-177, Int. J. Hydrog. Energy 34(2009) 2670-2678. [50] D.D. Do, Adsorption Analysis:Equilibria Kinetics, Imperial College Press, London, 1999. [51] C.L. Yaws, Chemical Properties Handbook, Mc-Graw-Hill, NY, 1999. [52] P. Küsgens, M. Rose, I. Senkovska, H. Frde, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater. 120(2009) 325-330. [53] Z. Lin, D.S. Wragg, R.E. Morris, Microwave-assisted synthesis of anionic metal-organic frameworks under ionothermal conditions, Chem. Commun. 19(2006) 2021-2023. [54] Y.R. Lee, J. Kim, W.S. Ahn, Synthesis of metal-organic framework:A mini review, Korean J. Chem. Eng. 30(2013) 1667-1680. [55] K.S. Park, Z. Ni, A.P. Côté, J.Y. Choi, R. Huang, F.J. Uribe Romo, H.K. Chae, M. O'Keeffe, O.M. Yaghi, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Natl. Acad. Sci. 103(2006) 10186-10191. [56] X. Wu, M. Niknam Shahrak, B. Yuan, S. Deng, Synthesis and characterization of zeolitic imidazolate framework ZIF-7 for CO2 and CH4 separation, Microporous Mesoporous Mater. 190(2014) 189-196. [57] M. NiknamShahrak, A. Shahsavand, A. Okhovat, Robust PSD determination of micro and meso-pore adsorbents via novel modified U curve method, Chem. Eng. Res. Des. 91(2013) 51-62. |