[1] M.R.H. Podeh, S.K. Bhattacharya, M. Qu, Effects of nitrophenols on acetate utilizing methanogenic systems, Water Res. 02(1995) 391-399. [2] A.E. Navarro, N.A. Cuizano, R.F. Portales, B.P. Llanos, Adsorptive removal of 2-nitrophenol and 2-chlorophenol by cross-linked algae from aqueous solutions, Sep. Sci. Technol. 43(2008) 3183-3199. [3] M.C. Tomeia, M.C. Annesinib, R. Lubertia, G. Centob, A. Seniab, Kinetics of 4-nitrophenol biodegradation in a sequencing batch reactor, Water Res. 16(2003) 3803-3814. [4] P. Kulkarni, Nitrophenol removal by simultaneous nitrification denitrification (SND) using T. pantotropha in sequencing batch reactors (SBR), Bioresour. Technol. 128(2013) 273-280. [5] M. Liang, R.X. Su, W. Qi, Y.J. Yu, L.B. Wang, Z.M. He, Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol, J. Mater. Sci. 49(2014) 1639-1647. [6] K.H. Wang, Y.H. Hsieh, M.Y. Chou, C.Y. Chang, Photocatalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution, Appl. Catal. B. 1(1999) 1-8. [7] Z.K. Zhu, L. Tao, F.B. Li, Effects of dissolved organic matter on adsorbed Fe(Ⅱ) reactivity for the reduction of 2-nitrophenol in TiO2 suspensions, Chemosphere 93(2013) 29-34. [8] S. Gu, W. Wang, F.T. Tan, J. Gu, X.L. Qiao, J.G. Chen, Facile route to hierarchical silver microstructures with high catalytic activity for the reduction of p-nitrophenol, Mater. Res. Bull. 49(2014) 138-143. [9] S.S. Zhang, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, Facile synthesis of antimony selenide with lamellar nanostructures and their efficient catalysis for the hydrogenation of p-nitrophenol, J. Alloys Compd. 585(2014) 40-47. [10] W.B. Liang, H.B. Chevreau, F. Ragon, P.D. Southon, V.K. Peterson, D.M. D'Alessandro, Tuning pore size in a zirconium-tricarboxylate metal-organic framework, Cryst. Eng. Comm. 16(2014) 6530-6533. [11] Q. Zhang, W.F. Jiang, H.L. Wang, M.D. Chen, Oxidative degradation of dinitro butyl phenol (DNBP) utilizing hydrogen peroxide and solar light over a Al2O3-supported Fe(Ⅲ)-5-sulfosalicylic acid (ssal) catalyst, J. Hazard. Mater. 176(2010) 1058-1064. [12] M.A. Oturan, J. Peiroten, P. Chartrin, A.J. Acher, Complete destruction of p-nitrophenol in aqueous medium by electro-Fenton method, Environ. Sci. Technol. 34(2000) 3474-3479. [13] V.K. Gupta, N. Atar, M.L. Yola, L. Uzun, A novel magnetic Fe@Au coreeshell nanoparticles anchored graphene oxide recyclable nanocatalyst for the reduction of nitrophenol compounds, Water Res. 48(2014) 210-217. [14] B. Koubaissy, G. Joly, P. Magnoux, Adsorption and competitive adsorption on zeolites of nitrophenol compounds present in wastewater, Ind. Eng. Chem. Res. 47(2008) 9558-9565. [15] Ö. Aktaş, C. Ferhan, Adsorption and cometabolic bioregeneration in activated carbon treatment of 2-nitrophenol, J. Hazard. Mater. 177(2010) 956-961. [16] Y. Ma, Q. Zhou, A.M. Li, C.D. Shuang, Q.Q. Shi, M.C. Zhang, Preparation of a novel magnetic microporous adsorbent and its adsorption behavior of p-nitrophenol and chlorotetracycline, J. Hazard. Mater. 266(2014) 84-93. [17] H.C. Zhou, J.R. Long, O.M. Yaghi, Introduction to metal-organic frameworks, Chem. Rev. 112(2012) 673-674. [18] L. Hailian, E. Mohamed, M. O'Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Lett. Nat. 402(1999) 276-279. [19] J.C. Rowsell, A.R. Millward, K.S. Park, O.M. Yaghi, Hydrogen sorption in functionalized metal-organic frameworks, J. Am. Chem. Soc. 126(2004) 5666-5667. [20] Y.Q. Yuan, G. Vincent, R. Florence, M. Guillaume, CH4 storage and CO2 capture in highly porous zirconium oxide based metal-organic frameworks, Chem. Commun. 48(2012) 9831-9833. [21] M. Lammert, Single-and mixed-linker Cr-MIL-101 derivatives:A high-throughput investigation, Inorg. Chem. 52(2013) 8521-8528. [22] V. Marie, D. Hakan, L.S. David, A. Jeffery, Molecular dynamics simulation of framework flexibility effects on noble gas diffusion in HKUST-1 and ZIF-8, Microporous Mesoporous Mater. 194(2014) 190-199. [23] J.C. Jiang, F. Gandara, Y.B. Zhang, K. Na, O.M. Yaghi, W.G. Klemperer, Superacidity in sulfated metal-organic framework-808, J. Am. Chem. Soc. 136(2014) 12844-12847. [24] P.P. Long, H.W. Wu, Q. Zhao, Y.X. Wang, J.X. Dong, J.P. Li, Solvent effect on the synthesis of MIL-96(Cr) and MIL-100(Cr), Microporous Mesoporous Mater. 2(2011) 489-493. [25] S.H. Huo, X.P. Yan, Facile magnetization of metal-organic framework MIL-101 for magnetic solid-phase extraction of polycyclic aromatic hydrocarbons in environmental water samples, Analyst 137(2012) 3445-3451. [26] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs):Plausible mechanisms for selective adsorptions, J. Hazard. Mater. 238(2015) 329-339. [27] B. Sarkar, Y. Xi, M. Megharaj, G.S.R. Krishnamurti, R. Naidu, Synthesis and characterisation of novel organopalygorskites for removal of p-nitrophenol from aqueous solution:Isothermal studies, J. Colloid Interface Sci. 350(2010) 295-304. [28] H. Chen, S. Chen, X. Yuan, Y.X. Zhou, Z.Y. Chun, Facile synthesis of metal-organic framework MIL-101 from 4-NIm-Cr(NO3)3-H2BDC-H2O, Mater. Lett. 100(2013) 230-232. [29] Z.Y. Gu, X.P. Yan, Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene somers and ethylbenzene, Angew. Chem. Int. Ed. 49(2010) 1477-1480. [30] S.H. Jhung, J.H. Lee, J.W. Yoon, C. Serre, G. Ferey, J.S. Chang, Microwave synthesis of chromium terephthalate MIL-101 and its benzene sorption ability, Adv. Mater. 19(2007) 121-124. [31] J.G. Zhang, H.E. Min, B.B. Fan, R.F. Li, Catalytic performance of MIL-101(Cr) in oxidation of cyclohexane with H2O2, Acta Pet. Sin. 29(2013) 238-242. [32] K. Laszlo, P. Podkoscielny, A. Dabrowski, Heterogeneity of polymer-based active carbons in the adsorption of aqueous solutions of phenol and 2,3,4-trichlorophenol, Langmuir 19(2003) 5287-5294. [33] P.H. Yu, Z.D. Chang, Y.H. Ma, S.J. Wang, H.B. Cao, C. Hua, H.Z. Liu, Separation of p-nitrophenol and o-nitrophenol with three-liquid-phase extraction system, Sep. Purif. Technol. 70(2009) 199-206. [34] R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, S.T. Mostafavi, Adsorption of 2-nitronphenol by multi-wall carbon nanotubes from aqueous solutions, Appl. Surf. Sci. 256(2010) 4447-4455. [35] Z.J. Bin, Z. Zhong, C. Bei, Y.J. Guo, Glycine-assisted hydrothermal synthesis and adsorption properties of crosslinked porous α-Fe2O3 nanomaterials for p-nitrophenol, Chem. Eng. J. 211(2012) 153-160. [36] Y.H. Liu, L. Guo, J. Chen, Removal of Cr(Ⅲ, VI) by quaternary ammonium and quaternary phosphonium ionic liquids functionalized silica materials, Chem. Eng. J. 158(2010) 108-114. [37] W.J. Weber, J.C. Morris, Advances in water pollution research:Removal of biologically resistant pollutants from waste waters by adsorption, Proceedings of International Conference on Water Pollution Symposium, vol. 2, Pergamon, Oxford 1962, pp. 231-266. [38] J.B. Zhou, L. Wang, Z. Zhang, J.G. Yu, Facile synthesis of alumina hollow microspheres via trisodium citrate-mediated hydrothermal process and their adsorption performances for p-nitrophenol from aqueous solutions, J. Colloid Interface Sci. 394(2013) 509-514. [39] G. McKay, S.J. Allen, Surface mass transfer processes using peat as an adsorbent for dye stuffs, Can. J. Chem. Eng. 58(1980) 521-525. |