[1] W. Jianlong, Z. Pingping, Y. Liqiong, et al., Adsorption characteristics of construction waste for heavy metals from urban stormwater runoff, Chin. J. Chem. Eng. 23(2015) 1542-1550.[2] C.Y. Fan, Sewer Sediment and Control:A Management Practices Reference Guide, United States Environmental Protection Agency, washington, 2004.[3] G. Yuan, W. Hongwu, Z. Shanfa, et al., Current research progress in combined sewer sediments and their models, China Water Wastewater 2(27) (2010) 15-18, 27.[4] L. Guiyun, J. Peihua, Study on importance and approaches to the reutilization of river sediment, J. Donghua Univ. Nat. Sci. 1(2002) 33-36.[5] H. Jun, W. Qishan, R. Ailing, Technology research on waterworks sludge and sewage sludge for ceramsite, Chin. J. Environ. Eng. 9(2009) 1653-1657.[6] W. Jing, L. Zongwen, T. Shun, et al., Existing state and development of sludgy researches in domestic and foreign, Munic. Eng. Technol. 24(3) (2006) 140-142.[7] C. Becouze-Lareure, L. Thiebaud, C. Bazin, et al., Dynamics of toxicity within different compartments of a peri-urban river subject to combined sewer overflow discharges, Sci. Total Environ. 539(2016) 503-514.[8] I. Ebtehaj, H. Bonakdari, S. Shamshirband, et al., A combined support vector machine-wavelet transform model for prediction of sediment transport in sewer, Flow Meas. Instrum. 47(2016) 19-27.[9] L. Yiwen, N. Bingjie, R. Ganigue, et al., Sulfide and methane production in sewer sediments, J. Water Res. 70(2015) 350-359.[10] J. Mattsson, A. Hedström, R.M. Ashley, et al., Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater-A review, J. Environ. Manag. 161(2015) 188-197.[11] R. Sakrabani, J. Vollertsen, R.M. Ashley, et al., Biodegradability of organic matter associated with sewer sediments during first flush, Sci. Total Environ. 407(8) (2009) 2989-2995.[12] L. Guiyun, X. Danli, Experiment on producing ceramisite with river sediment, J. Donghua Univ. Nat. Sci. 4(94) (2003) 81-83, 94.[13] W.S.W. Salim, S.F. Sadikon, S.M. Salleh, et al., Assessment of physical properties and chemical composition of Kuala Perlis dredged marine sediment as a potential brick material, Business, Engineering and Industrial Applications (ISBEIA), IEEE Symposium on, IEEE 2012, pp. 509-512.[14] H. Jun, W. Qishan, R. Ailing, Technology research on the production of high strength ceramsite by waterworks sewage, Ind. Saf. Environ. Prot. 11(2010) 51-52.[15] T. Yuanyuan, C. Siuwai, K. Shih, Copper stabilization in beneficial use of waterworks sludge and copper-laden electroplating sludge for ceramic materials, Waste Manag. 34(6) (2014) 1085-1091.[16] Y. Lan, J. Wei, L. Zhongyuan, et al., Material prepared from drinking waterworks sludge as adsorbent for ammonium removal from wastewater, Appl. Surf. Sci. 330(2015) 228-236.[17] Y. Lan, J. Wei, Z. Yumei, et al., Reuse of acid coagulant-recovered drinking waterworks sludge residual to remove phosphorus from wastewater, Appl. Surf. Sci. 305(2014) 337-346.[18] M.K. Gibbons, G.A. Gagnon, Adsorption of arsenic from a Nova Scotia groundwater onto water treatment residual solids, J. Water Res. 44(19) (2010) 5740-5749.[19] H. Jun, W. Qishan, R. Ailing, Use of sewage sludge for manufacturing light ceramsite, Urban Environ. Urban Ecol. 16(6) (2003) 13-14.[20] L.C. Herek, C.E. Hori, M.H.M. Reis, et al., Characterization of ceramic bricks incorporated with textile laundry sludge, Ceram. Int. 38(2) (2012) 951-959.[21] Y. Jian, Z. Chunhui, X. Meiyan, et al., Enhancement stabilization of heavy metals (Zn, Pb, Cr and Cu) during vermifiltration of liquid-state sludge, Bioresour. Technol. 146(2013) 649-655.[22] L. Xingwen, S. Kaimin, C. Hefa, Lead glass-ceramics produced from the beneficial use of waterworks sludge, J. Water Res. 47(3) (2013) 1353-1360.[23] T. Wang, W. Liu, N. Xu, et al., Adsorption and desorption of Cd(Ⅱ) onto titanate nanotubes and efficient regeneration of tubular structures, J. Hazard. Mater. 250(2013) 379-386.[24] X. Guoren, L. Mingwei, L. Guibai, Stabilization of heavy metals in lightweight aggregate made from sewage sludge and river sediment, J. Hazard. Mater. 260(2013) 74-81.[25] K.G. Akpomie, F.A. Dawodu, K.O. Adebowale, Mechanism on the sorption of heavy metals from binary-solution by a low cost montmorillonite and its desorption potential, Alex. Eng. J. 54(3) (2015) 757-767.[26] B. An, C.G. Lee, M.K. Song, et al., Applicability and toxicity evaluation of an adsorbent based on jujube for the removal of toxic heavy metals, React. Funct. Polym. 93(2015) 138-147.[27] S.E. Bailey, T.J. Olin, R.M. Bricka, et al., A review of potentially low-cost sorbents for heavy metals, J. Water Res. 33(11) (1999) 2469-2479.[28] A. Oskarsson, A. Widell, M. Olsson, et al., Cadmium in food chain and health effects in sensitive population groups, Biometals 17(5) (2004) 531-534.[29] E.W. Shin, R.M. Rowell, Cadmium ion sorption onto lignocellulosic biosorbent modified by sulfonation:The origin of sorption capacity improvement, Chemosphere 60(8) (2005) 1054-1061.[30] Z. Guoping, M. Fukami, H. Sekimoto, Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage, Field Crops Res. 77(2) (2002) 93-98.[31] L.M. Gaetke, C.K. Chow, Copper toxicity, oxidative stress, and antioxidant nutrients, Toxicology 189(1) (2003) 147-163.[32] S. Larous, A.H. Meniai, M.B. Lehocine, Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust, Desalination 185(1) (2005) 483-490.[33] W. Hao, S. Qiyong, L. Haibo, et al., Screen-printed gold electrode with gold nanoparticles modification for simultaneous electrochemical determination of lead and copper, Sensors Actuators B Chem. 209(2015) 336-342.[34] M.M. Matlock, B.S. Howerton, D.A. Atwood, Chemical precipitation of heavy metals from acid mine drainage, J. Water Res. 36(19) (2002) 4757-4764.[35] S.R. Younesi, H. Alimadadi, E.K. Alamdari, et al., Kinetic mechanisms of cementation of cadmium ions by zinc powder from sulphate solutions, Hydrometallurgy 84(3) (2006) 155-164.[36] W.W. Ngah, M.A.K.M. Hanafiah, Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents:A review, Bioresour. Technol. 99(10) (2008) 3935-3948.[37] A. Roy, J. Bhattacharya, A binary and ternary adsorption study of wastewater Cd(Ⅱ), Ni(Ⅱ) and Co(Ⅱ) by γ-Fe2O3 nanotubes, Sep Purif. Technol. 115(2013) 172-179.[38] C.H. Xiong, C.P. Yao, Study on the adsorption of cadmium(Ⅱ) from aqueous solution by D152 resin, J. Hazard. Mater. 166(2) (2009) 815-820.[39] X. Shengtao, Z. Meiqing, M. Zichuan, Removal of heavy metal ions from aqueous solution using red loess as an adsorbent, J. Environ. Sci. 23(9) (2011) 1497-1502.[40] H.A. Hegazi, Removal of heavy metals from wastewater using agricultural and industrial wastes as adsorbents, HBRC J. 9(3) (2013) 276-282.[41] C. Rongzhi, Z. Zhenya, F. Chuanping, et al., Application of simplex-centroid mixture design in developing and optimizing ceramic adsorbent for As(V) removal from water solution, Microporous Mesoporous Mater. 131(1) (2010) 115-121.[42] Z. Jinlong, X. Guoren, K. Pan, et al., Nitrogen removal and biofilm structure affected by COD/NH4+-N in a biofilter with porous sludge-ceramsite, Sep. Purif. Technol. 94(2012) 9-15.[43] X. Guoren, Z. Jinlong, L. Guibai, Ceramsite made with water and wastewater sludge and its characteristics affected by SiO2 and Al2O3, J. Environ. Sci. Technol. 42(19) (2008) 7417-7423.[44] I. Langmiur, The constitution and fundamental properties of solids and liquids, J. Am. Chem. Soc. 38(11) (1916) 2221-2295.[45] H.M.F. Freundlich, Uber die adsorption in losungen, Z. Phys. Chem. A 57(1906) 385-470.[46] S. Lagergren, K. Svenska, About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl. 24(1898) 1-39.[47] Y.S. Ho, G. Mckay, Pseudo-second order model for sorption processes, Process Biochem. 34(5) (1999) 451-456.[48] C.M. Riley, Relation of chemical properties to the bloating of clays, J. Am. Ceram. Soc. 34(4) (1951) 121-128.[49] X. Shuhong, M. Chunyan, Z. Jingwei, et al., Application of orthogonal design and regression analysis on ceramsite made of river sediment, Concrete 12(2008) 022.[50] X. Guoren, Z. Jinlong, Y. Dai, Utilization of dried sludge for making ceramsite, Water Sci. Technol. 54(9) (2006) 69-79.[51] Q. Jun, C. Chong, C. Xiaoyu, et al., Preparation and characterization of ceramsite from lime mud and coal fly ash, Constr. Build. Mater. 95(2015) 10-17.[52] D. Jinming, S. Bing, Removal characteristics of Cd(Ⅱ) from acidic aqueous solution by modified steel-making slag, Chem. Eng. J. 246(2014) 160-167.[53] J.H. Potgieter, S.S. Potgieter-Vermaak, P.D. Kalibantonga, Heavy metals removal from solution by palygorskite clay, Miner. Eng. 19(5) (2006) 463-470.[54] S. Weiling, J. Bofeng, W. Fei, et al., Effect of carbon nanotubes on Cd(Ⅱ) adsorption by sediments, Chem. Eng. J. 264(2015) 645-653.[55] W. Pingxiao, Z. Qian, D. Yaping, X. Wang, et al., Adsorption of Cu(Ⅱ), Cd(Ⅱ) and Cr(Ⅲ) ions from aqueous solutions on humic acid modified Ca-montmorillonite, Geoderma 164(3) (2011) 215-219.[56] W. Pan, D. Mingliang, Z. Han, et al., Structure regulation of silica nanotubes and their adsorption behaviors for heavy metal ions:pH effect, kinetics, isotherms and mechanism, J. Hazard. Mater. 286(2015) 533-544.[57] T.W. Weber, R.K. Chakravorti, Pore and solid diffusion models for fixed-bed adsorbers, AIChE J. 20(2) (1974) 228-238.[58] M.M. Rao, A. Ramesh, G.P.C. Rao, K. Seshaiah, Removal of copper and cadmium from the aqueous solutions by activated carbon derived from Ceiba pentandra hulls, J. Hazard. Mater. 129(1) (2006) 123-129.[59] M.F. Sawalha, J.R. Peralta-Videa, J. Romero-Gonzalez, et al., Thermodynamic and isotherm studies of the biosorption of Cu(Ⅱ), Pb(Ⅱ), and Zn(Ⅱ) by leaves of saltbush (Atriplex canescens), J. Chem. Thermodyn. 39(3) (2007) 488-492.[60] S. Azizian, Kinetic models of sorption:A theoretical analysis, J. Colloid Interface Sci. 276(1) (2004) 47-52.[61] K.G. Bhattacharyya, S.S. Gupta, Removal of Cu(Ⅱ) by natural and acid-activated clays:An insight of adsorption isotherm, kinetic and thermodynamics, Desalination 272(1) (2011) 66-75.[62] L. Weifeng, Z. Jian, C. Cheng, et al., Ultrasonic-assisted sodium hypochlorite oxidation of activated carbons for enhanced removal of Co(Ⅱ) from aqueous solutions, Chem. Eng. J. 175(2011) 24-32.[63] R.L. Frost, R. Scholz, R.M.F. Lima, et al., SEM, EDS and vibrational spectroscopic study of the sulphate mineral rostite AlSO4(OH, F)·5(H2O), Spectrochim. Acta A Mol. Biomol. Spectrosc. 151(2015) 616-620.[64] G.I.E. Ekosse, Fourier transform infrared spectrophotometry and X-ray powder diffractometry as complementary techniques in characterizing clay size fraction of Kaolin, J. Appl. Sci. Environ. Mgt. 9(2) (2005) 43-48.[65] A.B. Dukic, K.R. Kumric, N.S. Vukelic, et al., Influence of ageing of milled clay and its composite with TiO2 on the heavy metal adsorption characteristics, J. Ceram. Int. 41(3) (2015) 5129-5137.[66] F.A. Dawodu, K.G. Akpomie, Simultaneous adsorption of Ni(Ⅱ) and Mn(Ⅱ) ions from aqueous solution unto a Nigerian kaolinite clay, J. Mater. Res. Technol. 3(2) (2014) 129-141. |