[1] M.R. Awual, Innovative composite material for efficient and highly selective Pb(Ⅱ) ion capturing from wastewater, J. Mol. Liq. 284(2019) 502-510. [2] M.R. Karim, M.O. Aijaz, N.H. Alharth, H.F. Alharbi, F.S. Al-Mubaddel, M.R. Awual, Composite nanofibers membranes of poly(vinyl alcohol)/chitosan for selective lead(Ⅱ) and cadmium(Ⅱ) ions removal from wastewater, Ecotoxicol. Environ. Saf. 169(2019) 479-486. [3] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Effects of operating parameters and coexisting ions on the efficiency of heavy metal ions removal by nano-fibrous metal-organic framework membrane filtration process, Sci. Total Environ. 674(2019) 355-362. [4] I. Ali, Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water:batch and column operations, J. Mol. Liq. 217(2018) 677-685. [5] M. Ahmaruzzaman, V.K. Gupta, Rice husk and its ash as low-cost adsorbents in water and wastewater treatment, Ind. Eng. Chem. Res. 50(2011) 13589-13613. [6] V.K. Gupta, I. Ali, T.A. Saleh, M.N. Siddiqui, S. Agarwal, Chromium removal from water by activated carbon developed from waste rubber tires, Environ. Sci. Pollut. Res. 20(2013) 1261-1268. [7] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Metal-organic frameworks supported on nanofibers to remove heavy metals, J. Mater. Chem. A 6(2018) 4550-4555. [8] S. Haider, S.Y. Park, Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(Ⅱ) and Pb(Ⅱ) ions from an aqueous solution, J. Membr. Sci. 328(2009) 90-96. [9] K.B. Rufato, V.C. Almeida, M.J. Kipper, A.F. Rubira, A.F. Martins, E.C. Muniz, Polysaccharide-based adsorbents prepared in ionic liquid with high performance for removing Pb(Ⅱ) from aqueous systems, Carbohydr. Polym. 215(2019) 272-279. [10] D. Pathania, A. Sharma, Z.M. Siddiqi, Removal of Congo red dye from aqueous system using Phoenix dactylifera seeds, J. Mol. Liq. 219(2016) 359-367. [11] G. Akkaya Sayili, Synthesis, characterization and adsorption properties of a novel biomagnetic composite for the removal of Congo red from aqueous medium, J. Mol. Liq. 211(2015) 515-526. [12] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Experiment and modeling for flux and permeate concentration of heavy metal ion in adsorptive membrane filtration using a metal-organic framework incorporated nanofibrous membrane, Chem. Eng. J. 352(2018) 737-744. [13] V.K. Gupta, T.A. Saleh, Sorption of pollutants by porous carbon, carbon nanotubes and fullerene-an overview, Environ. Sci. Pollut. Res. 20(2013) 2828-2843. [14] Y. Chen, Y. Long, Q. Li, X. Chen, X. Xu, Synthesis of high-performance sodium carboxymethyl cellulose-based adsorbent for effective removal of methylene blue and Pb (Ⅱ), Int. J. Biol. Macromol. 126(2019) 107-117. [15] G. Li, J. Ye, Q. Fang, F. Liu, Amide-based covalent organic frameworks materials for efficient and recyclable removal of heavy metal lead (Ⅱ), Chem. Eng. J. (2019) 822-830. [16] M.R. Awual, An efficient composite material for selective lead(Ⅱ) monitoring and removal from wastewater, J. Environ. Chem. Eng. 7(2019) 103087. [17] M.R. Awual, A. Islam, M.M. Hasan, M.M. Rahman, A.M. Asiri, M.A. Khaleque, M. Chanmiya Sheikh, Introducing an alternate conjugated material for enhanced lead (Ⅱ) capturing from wastewater, J. Clean. Prod. 224(2019) 920-929. [18] L. Fu, S. Wang, G. Lin, L. Zhang, Q. Liu, H. Zhou, C. Kang, S. Wan, H. Li, S. Wen, Postmodification of UiO-66-NH2 by resorcyl aldehyde for selective removal of Pb(Ⅱ) in aqueous media, J. Clean. Prod. 229(2019) 470-479. [19] L. Wang, J. Li, Q. Jiang, L. Zhao, Water-soluble Fe3O4 nanoparticles with high solubility for removal of heavy-metal ions from waste water, Dalton Trans. 41(2012) 4544-4551. [20] D. Lv, Y. Liu, J. Zhou, K. Yang, Z. Lou, S.A. Baig, X. Xu, Application of EDTA-functionalized bamboo activated carbon (BAC) for Pb(Ⅱ) and Cu(Ⅱ) removal from aqueous solutions, Appl. Surf. Sci. 428(2017) 648-658. [21] A. Baruah, S. Mondal, L. Sahoo, U.K. Gautam, Ni-Fe-layered double hydroxide/Ndoped graphene oxide nanocomposite for the highly efficient removal of Pb(Ⅱ) and Cd(Ⅱ) ions from water, J. Solid State Chem. 280(2019) 120963. [22] Z. Hasan, S.H. Jhung, Removal of hazardous organics from water using metal-organic frameworks (MOFs):plausible mechanisms for selective adsorptions, J. Hazard. Mater. 283(2015) 329-339. [23] S. Khanjani, A. Morsali, Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye "Congo red,", Ultrason. Sonochem. 21(2014) 1424-1429. [24] C. Janiak, J.K. Vieth, MOFs, MILs and more:concepts, properties and applications for porous coordination networks (PCNs), New J. Chem. 34(2010) 2366-2388. [25] N.A. Khan, Z. Hasan, S.H. Jhung, Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs):a review, J. Hazard. Mater. 244-245(2013) 444-456. [26] J.E. Efome, D. Rana, T. Matsuura, C.Q. Lan, Insight studies on metal-organic framework nanofibrous membrane adsorption and activation for heavy metal ions removal from aqueous solution, ACS Appl. Mater. Interfaces 10(2018) 18619-18629. [27] M.Y. Masoomi, A. Morsali, P.C. Junk, Rapid mechanochemical synthesis of two new Cd(Ⅱ)-based metal-organic frameworks with high removal efficiency of Congo red, CrystEngComm. 17(2015) 686-692. [28] W.J. Son, J. Kim, J. Kim, W.S. Ahn, Sonochemical synthesis of MOF-5, Chem. Commun. (2008) 6336-6338. [29] L.G. Qiu, Z.Q. Li, Y. Wu, W. Wang, T. Xu, X. Jiang, Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines, Chem. Commun. (2008) 3642-3644. [30] C. Vaitsis, G. Sourkouni, C. Argirusis, Metal-organic frameworks (MOFs) and ultrasound:A review, Ultrason. Sonochem. 52(2019) 106-119. [31] N. Chang, C.-X. Yang, X.-P. Yan, Application metal-organic frameworks:to analytical chemistry, Encycl. Inorg. Bioinorg. Chem. (2014) 1-14. [32] J. Zolgharnein, S. Dermanaki Farahani, M. Bagtash, S. Amani, Application of a new metal-organic framework of[Ni2F2(4,4'-bipy)2(H2O)2](VO3)2.8H2O as an efficient adsorbent for removal of Congo red dye using experimental design optimization, Environ. Res. 182(2020) 109054. [33] J. Zolgharnein, N. Asanjarani, S.N. Mousavi, Optimization and characterization of Tl (I) adsorption onto modified Ulmus carpinifolia tree leaves, clean-soil, air, Water. 39(2010) 250-258. [34] R. Leardi, Experimental design in chemistry:a tutorial, Anal. Chim. Acta 652(2009) 161-172. [35] J. Zolgharnein, A. Shahmoradi, J.B. Ghasemi, Comparative study of Box-Behnken, central composite, and Doehlert matrix for multivariate optimization of Pb (Ⅱ) adsorption onto Robinia tree leaves, J. Chemom. 27(2013) 12-20. [36] S.L.C. Ferreira, R.E. Bruns, H.S. Ferreira, G.D. Matos, J.M. David, G.C. Brandão, E.G.P. da Silva, L.A. Portugal, P.S. dos Reis, A.S. Souza, W.N.L. dos Santos, Box-Behnken design:an alternative for the optimization of analytical methods, Anal. Chim. Acta 597(2007) 179-186. [37] K.Y. Foo, B.H. Hameed, Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156(2010) 2-10. [38] V. Vimonses, S. Lei, B. Jin, C.W.K. Chow, C. Saint, Kinetic study and equilibrium isotherm analysis of Congo Red adsorption by clay materials, Chem. Eng. J. 148(2009) 354-364. [39] J. Zolgharnein, A. Shahmoradi, P. Zolgharnein, S. Amani, Multivariate optimization and adsorption characterization of As(Ⅲ) removal by using fraxinus tree leaves, Chem. Eng. Commun. 203(2016) 210-223. [40] J. Zolgharnein, A. Shahmoradi, Adsorption of Cr(VI) onto Elaeagnus tree leaves:statistical optimization, equilibrium modeling, and kinetic studies, J. Chem. Eng. Data 55(2010) 3428-3437. [41] M. Ghaedi, S. Hajjati, Z. Mahmudi, I. Tyagi, S. Agarwal, A. Maity, V.K. Gupta, Modeling of competitive ultrasonic assisted removal of the dyes-methylene blue and Safranin-O using Fe3O4 nanoparticles, Chem. Eng. J. 268(2015) 28-37, https://doi.org/10.1016/j.cej.2014.12.090. [42] D.L. Pavia, G.M. Lampman, G.S. Kriz, J.R. Vyvyan, Introduction to Spectroscopy, Fourth, Brooks/Cole, Cengage Learning, USA, 2009. [43] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds-Part a:Theory and Applications in Inorganic Chemistry, Sixth, New Jersey, 2009. [44] R. Fernández De Luis, M.K. Urtiaga, J.L. Mesa, A.T. Aguayo, T. Rojo, M.I. Arriortua, Four nodal self-catenated[{Ni8(Bpy)16}V24O68].8.5(H2O), combining three dimensional metal-organic and inorganic frameworks, CrystEngComm 12(2010) 1880-1886. [45] L. Yang, T. Wen, L. Wang, T. Miki, H. Bai, X. Lu, H. Yu, T. Nagasaka, The stability of the compounds formed in the process of removal Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) by steelmaking slag in an acidic aqueous solution, J. Environ. Manag. 231(2019) 41-48. [46] H. Zhang, Y. Li, X. Wu, Y. Zhang, D. Zhang, Application of response surface methodology to the treatment landfill leachate in a three-dimensional electrochemical reactor, Waste Manag. 30(2010) 2096-2102. [47] S. Liu, Y. Ding, P. Li, K. Diao, X. Tan, F. Lei, Y. Zhan, Q. Li, B. Huang, Z. Huang, Adsorption of the anionic dye Congo red from aqueous solution onto natural zeolites modified with N,N-dimethyl dehydroabietylamine oxide, Chem. Eng. J. 248(2014) 135-144. [48] M. Roosta, M. Ghaedi, A. Daneshfar, R. Sahraei, A. Asghari, Optimization of the ultrasonic assisted removal of methylene blue by gold nanoparticles loaded on activated carbon using experimental design methodology, Ultrason. Sonochem. 21(2014) 242-252. [49] F. Nekouei, S. Nekouei, I. Tyagi, V.K. Gupta, Kinetic, thermodynamic and isotherm studies for acid blue 129 removal from liquids using copper oxide nanoparticlemodified activated carbon as a novel adsorbent, J. Mol. Liq. 201(2015) 124-133. [50] M.A.M. Salleh, D.K. Mahmoud, W.A.W.A. Karim, A. Idris, Cationic and anionic dye adsorption by agricultural solid wastes:a comprehensive review, Desalination 280(2011) 1-13. [51] H. Qiu, L. Lv, B. Pan, Q. Zhang, W. Zhang, Q. Zhang, Critical review in adsorption kinetic models, J. Zhejiang Univ. A. 10(2009) 716-724. [52] J. Shu, Z. Wang, Y. Huang, N. Huang, C. Ren, W. Zhang, Adsorption removal of Congo red from aqueous solution by polyhedral Cu2O nanoparticles:kinetics, isotherms, thermodynamics and mechanism analysis, J. Alloys Compd. 633(2015) 338-346. [53] A.B. Albadarin, C. Mangwandi, A.H. Al-Muhtaseb, G.M. Walker, S.J. Allen, M.N.M. Ahmad, Kinetic and thermodynamics of chromium ions adsorption onto low-cost dolomite adsorbent, Chem. Eng. J. 179(2012) 193-202. [54] S.J. Allen, Q. Gan, R. Matthews, P.A. Johnson, Comparison of optimised isotherm models for basic dye adsorption by kudzu, Bioresour. Technol. 88(2003) 143-152. [55] S.G. Wang, W.X. Gong, X.W. Liu, Y.W. Yao, B.Y. Gao, Q.Y. Yue, Removal of lead(Ⅱ) from aqueous solution by adsorption onto manganese oxide-coated carbon nanotubes, Sep. Purif. Technol. 58(2007) 17-23. [56] J. Goel, K. Kadirvelu, C. Rajagopal, V.K. Garg, Removal of lead(Ⅱ) by adsorption using treated granular activated carbon:batch and column studies, J. Hazard. Mater. 125(2005) 211-220. [57] M. Sekar, V. Sakthi, S. Rengaraj, Kinetics and equilibrium adsorption study of lead(Ⅱ) onto activated carbon prepared from coconut shell, J. Colloid Interface Sci. 279(2004) 307-313. [58] Q. Wang, C. Zheng, Z. Shen, Q. Lu, C. He, T.C. Zhang, J. Liu, Polyethyleneimine and carbon disulfide co-modified alkaline lignin for removal of Pb2+ ions from water, Chem. Eng. J. (2019) 265-274. [59] H. Demey, T. Melkior, A. Chatroux, K. Attar, S. Thiery, H. Miller, M. Grateau, A.M. Sastre, M. Marchand, Evaluation of torrefied poplar-biomass as a low-cost sorbent for lead and terbium removal from aqueous solutions and energy co-generation, Chem. Eng. J. 361(2019) 839-852. [60] S. Bao, K. Li, P. Ning, J. Peng, X. Jin, L. Tang, Highly effective removal of mercury and lead ions from wastewater by mercaptoamine-functionalised silica-coated magnetic nano-adsorbents:behaviours and mechanisms, Appl. Surf. Sci. 393(2016) 457-466. [61] S. Kamari, F. Ghorbani, A. Mohammad, Adsorptive removal of lead from aqueous solutions by amine-functionalized magMCM-41 as a low-cost nanocomposite prepared from rice husk:modeling and optimization by response surface methodology, Sustain. Chem. Pharm. 13(2019) 100153. [62] R. Gao, L. Xiang, H. Hu, Q. Fu, J. Zhu, Y. Liu, G. Huang, High-efficiency removal capacities and quantitative sorption mechanisms of Pb by oxidized rape straw biochars, Sci. Total Environ. 699(2019) 134262. [63] A.E. Burakov, E.V. Galunin, I.V. Burakova, A.E. Kucherova, S. Agarwal, A.G. Tkachev, V. K. Gupta, Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes:a review, Ecotoxicol. Environ. Saf. 148(2018) 702-712. [64] V.K. Gupta, A. Nayak, S. Agarwal, Bioadsorbents for remediation of heavy metals:current status and their future prospects, Environ. Eng. Res. 20(2015) 001-018. [65] R. Aigbe, D. Kavaz, Unravel the potential of zinc oxide nanoparticle-carbonized sawdust matrix for removal of lead (Ⅱ) ions from aqueous solution, Chin. J. Chem. Eng. (2020) https://doi.org/10.1016/j.cjche.2020.05.007. [66] F. Ke, J. Jiang, Y. Li, J. Liang, X. Wan, S. Ko, Highly selective removal of Hg2+ and Pb2+ by thiol-functionalized Fe3O4@metal-organic framework core-shell magnetic microspheres, Appl.Surf.Sci. 15(2017) 266-274. |