Chinese Journal of Chemical Engineering ›› 2017, Vol. 25 ›› Issue (11): 1639-1652.DOI: 10.1016/j.cjche.2017.04.014
Yanli Ji1, Weijie Qian1, Yawei Yu1, Quanfu An2, Lifen Liu1, Yong Zhou1, Congjie Gao1
收稿日期:
2017-02-28
修回日期:
2017-04-05
出版日期:
2017-11-28
发布日期:
2018-01-18
通讯作者:
Yong Zhou,E-mail address:zhouy@zjut.edu.cn
基金资助:
Supported by the National Natural Science Foundation of China (21306163), and the National Basic Research Program of China (2015CB655303).
Yanli Ji1, Weijie Qian1, Yawei Yu1, Quanfu An2, Lifen Liu1, Yong Zhou1, Congjie Gao1
Received:
2017-02-28
Revised:
2017-04-05
Online:
2017-11-28
Published:
2018-01-18
Contact:
Yong Zhou,E-mail address:zhouy@zjut.edu.cn
Supported by:
Supported by the National Natural Science Foundation of China (21306163), and the National Basic Research Program of China (2015CB655303).
摘要: Nanofiltration membranes are the core elements for nanofiltration process. The chemical structures and physical properties of nanofiltration membranes determine water permeability, solute selectivity, mechanical/thermal stability, and antifouling properties, which greatly influence the separation efficiency and operation cost in nanofiltration applications. In recent years, a great progress has been made in the development of high performance nanofiltration membranes based on nanomaterials. Considering the increasing interest in this field, this paper reviews the recent studies on the nanofiltration membranes comprising various nanomaterials, including the metal and metal oxide nanoparticles, carbon-based nanomaterials, metal-organic frameworks (MOFs), water channel proteins, and organic micro/nanoparticles. Finally, a perspective is given on the further exploitation of advanced nanomaterials and novel strategy for fabricating nano-based nanofiltration membranes. Moreover, the development of precision instruments and simulation techniques is necessary for the characterization of membrane microstructure and investigation of the separation and antifouling mechanism of nanofiltration membranes prepared with nanomaterials.
Yanli Ji, Weijie Qian, Yawei Yu, Quanfu An, Lifen Liu, Yong Zhou, Congjie Gao. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1639-1652.
Yanli Ji, Weijie Qian, Yawei Yu, Quanfu An, Lifen Liu, Yong Zhou, Congjie Gao. Recent developments in nanofiltration membranes based on nanomaterials[J]. Chin.J.Chem.Eng., 2017, 25(11): 1639-1652.
[1] M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Science and technology for water purification in the coming decades, Nature 452(2008) 301-310.[2] M. Elimelech, W.A. Phillip, The future of seawater desalination:Energy, technology, and the environment, Science 333(2011) 712-717.[3] K.P. Lee, T.C. Arnot, D. Mattia, A review of reverse osmosis membrane materials for desalination-development to date and future potential, J. Membr. Sci. 370(2011) 1-22.[4] P. Vandezande, L.E.M. Gevers, I.F.J. Vankelecom, Solvent resistant nanofiltration:separating on a molecular level, Chem. Soc. Rev. 37(2008) 365-405.[5] R.W. Baker, Membrane Technology and Applications, second ed. John Wiley & Sons, NY, 2004.[6] R.J. Petersen, Composite reverse-osmosis and nanofiltration membranes, J. Membr. Sci. 83(1993) 81-150.[7] X. Zheng, Y.S. Wei, Z.W. Wang, Z.X. Zhang, Report for sustainable development strategy of china water treatment industry, Membrane and Industry Ⅱ, China Renmin University Press, Beijing, 2016(in Chinese).[8] M. Ulbricht, Advanced functional polymer membranes, Polymer 47(2006) 2217-2262.[9] J.R. Werber, C.O. Osuji, M. Elimelech, Materials for next-generation desalination and water purification membranes, Nat. Rev. Mater. 16018(2016) 1-15.[10] D. Li, H.T. Wang, Recent developments in reverse osmosis desalination membranes, J. Mater. Chem. 20(2010) 4551-4566.[11] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification:Status and future, Angew. Chem. Int. Ed. 54(2015) 3368-3386.[12] A.W. Mohammad, Y.H. Teowa, W.L. Ang, Y.T. Chung, D.L. Oatley-Radcliffe, N. Hila, Nanofiltration membranes review:Recent advances and future prospects, Desalination 356(2015) 226-254.[13] M.M. Pendergast, E.M.V. Hoek, A review of water treatment membrane nanotechnologies, Energy Environ. Sci. 4(2011) 1946-1971.[14] D. Li, Y.S. Yan, H.T. Wang, Recent advances in polymer and polymer composite membranes for reverse and forward osmosis processes, Prog. Polym. Sci. 61(2016) 104-155.[15] J. Yin, B.L. Deng, Polymer-matrix nanocomposite membranes for water treatment, J. Membr. Sci. 479(2015) 256-275.[16] J.H. Jhaveri, Z.V.P. Jhaveri, V. Murthy, A comprehensive review on anti-fouling nanocomposite membranes for pressure driven membrane separation processes, Desalination 379(2016) 137-154.[17] P.S. Goh, A.F. Ismail, N. Hilal, Nano-enabled membranes technology:Sustainable and revolutionarysolutionsformembranedesalination, Desalination 380(2016)100-104.[18] B.H. Jeong, E.M.V. Hoek, Y.S. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci. 294(2007) 1-7.[19] M.L. Lind, B.H. Jeong, A. Subramani, X. Huang, E.M.V. Hoek, Effect of mobile cation on zeolite-polyamide thin film nanocomposite membranes, J. Mater. Res. 24(2009) 1624-1631.[20] M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M.V. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir 25(2009) 10139-10145.[21] H. Huang, X. Qu, H. Dong, L. Zhang, H. Chen, Role of NaA zeolites in the interfacial polymerization process towards a polyamide nanocomposite reverse osmosis membrane, RSC Adv. 3(2013) 8203-8207.[22] L.X. Dong, X.C. Huang, Z. Wang, Z. Yang, X.M. Wang, C.Y. Tang, A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles, Sep. Purif. Methods 166(2016) 230-239.[23] H.Q. Wu, B.B. Tang, P.Y. Wu, Optimizing polyamide thin film composite membrane covalently bonded with modified mesoporous silica nanoparticles, J. Membr. Sci. 428(2013) 341-348.[24] Y.F. Li, H. Mao, H.Q. Zhang, G.H. Yang, R. Ding, J.T. Wang, Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration, Sep. Purif. Methods 165(2016) 60-70.[25] K. Sunada, Y. Kikuchi, K. Hashimoto, A. Fujishima, Bactericidal and detoxification effects of TiO2 thin film photocatalysts, Environ. Sci. Technol. 32(1998) 726-728.[26] S.H. Kim, S.Y. Kwak, B.H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci. 211(2003) 157-165.[27] S.Y. Kwak, S.H. Kim, S.S. Kim, Hybrid organic/inorganic reverse osmosis (RO) membrane for bactericidal anti-fouling. 1. Preparation and characterization of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane, Environ. Sci. Technol. 35(2001) 2388-2394.[28] S. Madaeni, N. Ghaemi, Characterization of self-cleaning RO membranes coated with TiO2 particles under UV irradiation, J. Membr. Sci. 303(2007) 221-233.[29] R.A. Damodar, S.J. You, H.H. Chou, Study the self cleaning, antibacterial and photocatalytic properties of TiO2 entrapped PVDF membranes, J. Hazard. Mater. 172(2009) 1321-1328.[30] Z.N. Song, M. Fathizadeh, Y. Huang, K. Chu, Y. Yoon, L. Wang, W.W. Xu, M. Yu, TiO2 nanofiltration membranes prepared by molecular layer deposition for water purification, J. Membr. Sci. 510(2016) 72-78.[31] W.L. Chou, D.G. Yu, M.C. Yang, The preparation and characterization of silverloading cellulose acetate hollow fiber membrane for water treatment, Polym. Adv. Technol. 16(2005) 600-607.[32] K. Zodrow, L. Brunet, S. Mahendra, D. Li, A. Zhang, Q.L. Li, P.J.J. Alvarez, Polysulfone ultrafiltration membranes impregnated with silver nanoparticles show improved biofouling resistance and virus removal, Water Res. 43(2009) 715-723.[33] A. Mollahosseini, A. Rahimpour, A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties, Biofouling 29(2013) 537-548.[34] X. Liu, S. Qi, L. Yang, B. Cao, C.Y. Tang, Synthesis and characterization of novel antibacterial silver nanocomposite nanofiltration and forward osmosis membranes based on layer-by-layer assembly, Water Res. 47(2013) 3081-3092.[35] J. Yin, Y. Yang, Z.Q. Hu, B.L. Deng, Attachment of silver nanoparticles (AgNPs) onto thin-film composite (TFC) membranes through covalent bonding to reduce membrane biofouling, J. Membr. Sci. 441(2013) 73-82.[36] S.S. Liu, F. Fang, J.J. Wu, K.S. Zhang, The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles, Desalination 375(2015) 121-128.[37] Y. Zhang, Y. Wan, Y.T. Shi, G.Y. Pan, H. Yan, J. Xu, M. Guo, L.X. Qin, Y.Q. Liu, Facile modification of thin-film composite nanofiltration membrane with silver nanoparticles for anti-biofouling, J. Polym. Res. 23(2016) 1-9.[38] S.Y. Lee, H.J. Kim, R.K. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane:Characterization, nanofiltration, antifouling properties, Polym. Adv. Technol. 18(2007) 562-568.[39] C.L. Kong, A. Koushima, T. Kamada, T. Shintani, M. Kanezashi, T. Yoshioka, T. Tsuru, Enhanced performance of inorganic-polyamide nanocomposite membranes prepared by metal-alkoxide-assisted interfacial polymerization, J. Membr. Sci. 366(2011) 382-388.[40] E.S. Kim, B. Deng, Fabrication of polyamide thin-film nano-composite (PATFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications, J. Membr. Sci. 375(2011) 46-54.[41] E.S. Kim, G. Hwang, M.G. El-Din, Y. Liu, Development of nanosilver and multiwalled carbon nanotubes thin-film nanocomposite membrane for enhanced water treatment, J. Membr. Sci. 394-395(2012) 37-48.[42] D. Hu, Z.L. Xu, Y.M. Wei, A high performance silica-fluoropolyamide nanofiltration membrane prepared by interfacial polymerization, Sep. Purif. Technol. 110(2013) 31-38.[43] B. Rajaeian, A. Rahimpour, M.O. Tade, S.M. Liu, Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles, Desalination 313(2013) 176-188.[44] P. Daraei, S.S. Madaeni, E. Salehi, N. Ghaemi, H.S. Ghari, M.A. Khadivi, E. Rostami, Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support:Preparation, characterization and performance in dye removal, J. Membr. Sci. 436(2013) 97-108.[45] M. Majumder, N. Chopra, R. Andrews, B.J. Hinds, Colloid science:Non-spherical bubbles, Nature 438(2005) 930.[46] H.Q. Wu, B.B. Tang, P.Y. Wu, MWNTs/polyester thin film nanocomposite membrane:An approach to overcome the trade-off effect between permeability and selectivity, J. Phys. Chem. C 114(2010) 16395-16400.[47] A. Tiraferri, C.D. Vecitis, M. Elimelech, Covalent binding of single-walled carbon nanotubes to polyamide membranes for antimicrobial surface properties, ACS Appl. Mater. Interfaces 3(2011) 2869-2877.[48] H.D. Lee, H.W. Kim, Y.H. Cho, H.B. Park, Experimental evidence of rapid water transport through carbon nanotubes embedded in polymeric desalination membranes, Small 10(2014) 2653-2660.[49] F.Y. Zhao, Y.L. Ji, X.D. Weng, Y.F. Mi, C.C. Ye, Q.F. An, C.J. Gao, High-flux positively charged nanocomposite nanofiltration membranes filled with poly(dopamine) modified multiwall carbon nanotubes, ACS Appl. Mater. Interfaces 8(2016) 6693-6700.[50] F.Y. Zhao, Q.F. An, Y.L. Ji, C.J. Gao, A novel type of polyelectrolyte complex/MWCNT hybrid nanofiltration membranes for water softening, J. Membr. Sci. 492(2015) 412-421.[51] M. Terrones, N. Grobert, J. Olivares, J.P. Zhang, H. Terrones, K. Kordatos, W.K. Hsu, J.P. Hare, P.D. Townsend, K. Prassides, A.K. Cheetham, H.W. Kroto, D.R.M. Walton, Controlled production of aligned-nanotube bundles, Nature 388(1997) 52-55.[52] K. Bubke, H. Gnewuch, M. Hempstead, J. Hammer, M.L.H. Green, Optical anisotropy of dispersed carbon nanotubes induced by an electric field, Appl. Phys. Lett. 71(1997) 1906-1908.[53] M.R. Maschmann, A.D. Franklin, P.B. Amama, D.N. Zakharov, E.A. Stach, T.D. Sands, T.S. Fisher, Vertical single-and double-walled carbon nanotubes grown from modified porous anodic alumina templates, Nanotechnology 17(2006) 3925-3929.[54] W.F. Chan, H.Y. Chen, A. Surapathi, M.G. Taylor, X.H. Shao, E. Marand, J.K. Johnson, Zwitterion functionalized carbon nanotube/polyamide nanocomposite membranes for water desalination, ACS Nano 7(2013) 5308-5319.[55] H.Y. Zhao, Z.J. Zhou, H. Dong, L. Zhang, H.L. Chen, L. Hou, A facile method to align carbon nanotubes on polymeric membrane substrate, Sci. Rep. 3(2013) 3480-3484.[56] G.P. Liu, W.Q. Jin, N.P. Xu, Graphene-based membranes, Chem. Soc. Rev. 44(2015) 5016-5030.[57] N.X. Wang, S.L. Ji, G.J. Zhang, J. Li, L. Wang, Self-assembly of graphene oxide and polyelectrolyte complex nanohybrid membranes for nanofiltration and pervaporation, Chem. Eng. J. 213(2012) 318-329.[58] S. Bano, A. Mahmood, S.J. Kim, K.H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A 3(2015) 2065-2071.[59] M. Hu, B.X. Mi, Enabling graphene oxide nanosheets as water separation membranes, Environ. Sci. Technol. 47(2013) 3715-3723.[60] G. Cicero, J.C. Grossman, E. Schwegler, F. Gygi, G. Galli, Water confined in nanotubes and between graphene sheets:a first principle study, J. Am. Chem. Soc. 130(2008) 1871-1878.[61] S.K. Kannam, B.D. Todd, J.S. Hansen, P.J. Daivis, Slip length of water on graphene:limitations of non-equilibrium molecular dynamics simulations, J. Chem. Phys. 136(2) (2012) 140-151.[62] L. Qiu, X.H. Zhang, W.R. Yang, Y.F. Wang, G.P. Simon, D. Li, Controllable corrugation of chemically converted graphene sheets in water and potential application for nanofiltration, Chem. Commun. 47(2011) 5810-5812.[63] Y. Han, Z. Xu, C. Gao, Ultrathin graphene nanofiltration membrane for water purification, Adv. Funct. Mater. 23(2013) 3693-3700.[64] Y. Han, Y.Q. Jiang, C. Gao, High-flux graphene oxide nanofiltration membrane intercalated by carbon nanotubes, ACS Appl. Mater. Interfaces 7(2015) 8147-8155.[65] W.S. Hung, C.H. Tsou, M.D. Guzman, Q.F. An, Y.L. Liu, Y.M. Zhang, C.C. Hu, K.R. Lee, J.Y. Lai, Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing, Chem. Mater. 26(2014) 2983-2990.[66] F. Perreault, M.E. Tousley, M. Elimelech, Thin-film composite polyamide membranes functionalized with biocidal graphene oxide nanosheets, Environ. Sci. Technol. Lett. (2013) 71-76.[67] S.B. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R.R. Jiang, J. Kong, Y. Chen, Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide:membrane and oxidative stress, ACS Nano 5(2011) 6971-6980.[68] J.L. Wang, X.L. Gao, J. Wang, Y. Wei, Z.K. Li, C.J. Gao, O-(Carboxymethyl)-chitosan nanofiltration membrane surface functionalized with graphene oxide nanosheets for enhanced desalting properties, ACS Appl. Mater. Interfaces 7(2015) 4381-4389.[69] S. Roy, S.A. Ntim, S. Mitra, K.K. Sirkar, Facile fabrication of superior nanofiltration membranes from interfacially polymerized CNT-polymer composites, J. Membr. Sci. 375(2011) 81-87.[70] G.N. Baroña, M. Choi, B. Jung, High permeate flux of PVA/PSf thin film composite nanofiltration membrane with aluminosilicate single-walled nanotubes, J. Colloid Interface Sci. 386(2012) 189-197.[71] J.N. Shen, C.C. Yu, H.M. Ruan, C.J. Gao, B.V. Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci. 442(2013) 18-26.[72] C.C. Yu, H.W. Yu, Y.X. Chu, H.M. Ruan, J.N. Shen, Preparation thin film nanocomposite membrane incorporating PMMA modified MWNT for nanofiltration, Key Eng. Mater. 565(2013) 882-886.[73] H.Q. Wu, B.B. Tang, P.Y. Wu, Optimization, characterization and nanofiltration properties test of MWNTs/polyester thin film nanocomposite membrane, J. Membr. Sci. 428(2013) 425-433.[74] B. Seoane, J. Coronas, I. Gascon, M.E. Benavides, O. Karvan, J. Caro, J. Gascon, Metal-organic framework based mixed matrix membranes:a solution for highly efficient CO2 capture, Chem. Soc. Rev. 44(2015) 2421-2454.[75] S. Sorribas, P. Gorgojo, C. Tellez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135(40) (2013) 15201-15208.[76] L.Y. Wang, M.Q. Fang, J. Liu, J. He, J.D. Li, J.D. Lei, Layer-by-layer fabrication of highperformance polyamide/ZIF-8 nanocomposite membrane for nanofiltration applications, ACS Appl. Mater. Interfaces 7(2015) 24082-24093.[77] C.V. Goethem, R. Verbeke, S. Hermans, R. Bernstein, I.F.J. Vankelecom, Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites, J. Mater. Chem. A 4(2016) 16368-16376.[78] Y. Xu, X.L. Gao, Q. Wang, X.Y. Wang, Z.Y. Ji, C.J. Gao, Highly stable MIL-101(Cr) doped water permeable thin film nanocomposite membranes for water treatment, RSC Adv. 6(2016) 82669-82675.[79] R. Zhang, S. Ji, N. Wang, L. Wang, G. Zhang, J.R. Li, Coordination-driven in situ selfassembly strategy for the preparation of metal-organic framework hybrid membranes, Angew. Chem. Int. Ed. 53(2014) 9775-9779.[80] N.X. Wang, T.J. Liu, H.P. Shen, S.L. Ji, J.R. Li, Ceramic tubular MOF hybrid membrane fabricated through in situ layer-by-layer self-assembly for nanofiltration, AIChE J. 62(2016) 538-546.[81] J. Campbell, J.D.S. Burgal, G. Szekely, R.P. Davies, D.C. Braddock, A. Livingston, Hybrid polymer/MOF membranes for organic solvent nanofiltration (OSN):Chemical modification and the quest for perfection, J. Membr. Sci. 503(2016) 166-176.[82] A.S. Huang, Q. Liu, N.Y. Wang, Y.Q. Zhu, J. Caro, Bicontinuous zeolitic imidazolate framework ZIF-8@GO membrane with enhanced hydrogen selectivity, J. Am. Chem. Soc. 136(2014) 14686-14689.[83] Y. Hu, J. Wei, Y. Liang, H. Zhang, X. Zhang, W. Shen, H. Wang, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets as seeds for the growth of ultrathin molecular sieving membranes, Angew. Chem. Int. Ed. 55(2016) 2048-2052.[84] J. Wang, Y.M. Wang, Y.T. Zhang, A. Uliana, J.Y. Zhu, J.D. Liu, B.V. Bruggen, Zeolitic imidazolate framework/graphene oxide hybrid nanosheets functionalized thin film nanocomposite membrane for enhanced antimicrobial performance, ACS Appl. Mater. Interfaces 8(2016) 25508-25519.[85] N.X. Wang, X.T. Li, L. Wang, L.L. Zhang, G.J. Zhang, S.L. Ji, Nanoconfined zeolitic imidazolate framework membranes with composite layers of nearly zero thickness, ACS Appl. Mater. Interfaces 8(2016) 21979-21983.[86] L.F. Zhu, H.W. Yu, H.J. Zhang, J.N. Shen, L.X. Xue, C.J. Gao, B.V. Bruggen, Mixed matrix membranes containing MIL-53(Al) for potential application in organic solvent nanofiltration, RSC Adv. 5(89) (2015) 73068-73076.[87] J. Campbell, R.P. Davies, D.C. Braddockb, A.G. Livingston, Improving the permeance of hybrid polymer/metal organic framework (MOF) membranes for organic solvent nanofiltration (OSN)-development of MOF thin films via interfacial synthesis, J. Mater. Chem. A3(18) (2015) 9668-9674.[88] Y.B. Li, L.H. Wee, A. Volodin, J.A. Martensa, I.F.J. Vankelecom, Polymer supported ZIF-8 membranes prepared via an interfacial synthesis method, Chem. Commun. 51(5) (2015) 918-920.[89] J. Campbell, G. Szekely, R.P. Davies, D.C. Braddock, A.G. Livingston, Fabrication of hybrid polymer/metal organic framework membranes:Mixed matrix membranes versus in situ growth, J. Mater. Chem. A 2(2) (2014) 9260-9271.[90] R. Zhang, S.L. Ji, N.X. Wang, L. Wang, G.J. Zhang, J.R. Li, Coordination-driven in situ self-assembly strategy for the preparation of metal-organic framework hybrid membranes, Angew. Chem. Int. Ed. 126(37) (2015) 9933-9937.[91] L.Y. Wang, S.X. Duan, M.Q. Fang, J. Liu, J. He, J.D. Li, J.D. Lei, Surface modification route to prepare novel polyamide@NH2_MIL-88B nanocomposite membranes for water treatment, RSC Adv. 6(75) (2016) 71250-71261.[92] L.Y. Wang, M.Q. Fang, J. Liu, J. He, L.H. Deng, J.D. Li, J.D. Lei, The influence of dispersed phases on polyamide/ZIF-8 nanofiltration membranes for dye removal from water, RSC Adv. 5(63) (2015) 50942-50954.[93] R. Truby, Seawater desalination by ultralow-energy reverse osmosis, Adv. Membr. Tech. Appl. (2008) 87-100.[94] P. Agre, S. Sasaki, M.J. Chrispeels, Aquaporins:a family of water channel proteins, Am. J. Physiol. Ren. Physiol. 265(1993) F461.[95] D. Kozono, M. Yasui, L.S. King, P. Agre, Aquaporin water channels:atomic structure and molecular dynamics meet clinical medicine, J. Clin. Invest. 109(2002) 1395-1399.[96] M. Kumar, M. Grzelakowski, J. Zilles, M. Clark, W. Meier, Highly permeable polymeric membranes based on the incorporation of the functional water channel protein Aquaporin Z, Proc. Natl. Acad. Sci. U. S. A. 104(2007) 20719-20724.[97] Y. Kaufman, A. Berman, V. Freger, Supported lipid bilayer membranes for water purification by reverse osmosis, Langmuir 26(2010) 7388-7395.[98] P.S. Zhong, T.S. Chung, K. Jeyaseelan, A. Armugam, Aquaporin-embedded biomimetic membranes for nanofiltration, J. Membr. Sci. 407(2012) 27-33.[99] Y. Zhao, C.Q. Qiu, X.S. Li, A. Vararattanavech, W.M. Shen, J. Torres, C. Nielsen, R. Wang, X. Hu, A. Fane, C. Tang, Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization, J. Membr. Sci. 423(2012) 422-428.[100] W.D. Ding, J. Cai, Z.Y. Yu, Q.H. Wang, Z.N. Xu, Z.N. Wang, C.J. Gao, Fabrication of an aquaporin-based forward osmosis membrane through covalent bonding of a lipid bilayer to a microporous support, J. Mater. Chem. A 3(2015) 20118-20126.[101] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes:History, applications, challenges and approaches, Water Res. 80(2015) 306-324.[102] X. Li, A. Sotto, J.S. Li, B.V. Bruggen, Progress and perspectives for synthesis of sustainable antifouling composite membranes containing in situ generated nanoparticles, J. Membr. Sci. 524(2017) 502-528.[103] M.R. Kotte, M. Cho, M.S. Diallo, A facile route to the preparation of mixed matrix polyvinylidene fluoride membranes with in-situ generated polyethyleneimine particles, J. Membr. Sci. 450(2014) 93-102.[104] Y.C. Zheng, S.P. Li, Z.L. Weng, C.J. Gao, Hyperbranched polymers:Advances from synthesis to applications, Chem. Soc. Rev. 44(12) (2015) 4091-4130.[105] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries, Sep. Sci. Technol. 62(2008) 1-21.[106] X.Z. Wei, L.P. Zhu, H.Y. Deng, Y.Y. Xu, B.K. Zhu, Z.M. Huang, New type of nanofiltration membrane based on crosslinked hyperbranched polymers, J. Membr. Sci. 323(2008) 278-287.[107] Y.C. Chiang, Y.Z. Hsub, R.C. Ruaan, C.J. Chuang, K.L. Tung, Nanofiltration membranes synthesized from hyperbranched polyethyleneimine, J. Membr. Sci. 326(2009) 19-26.[108] J.X. Qin, S.S. Lin, S.Q. Song, L. Zhang, H.L. Chen, 4-Dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane, ACS Appl. Mater. Interfaces 5(2013) 6649-6656.[109] S.P. Malinga, O.A. Arotiba, R.W.M. Krause, S.F. Mapolie, M.S. Diallo, B.B. Mamba, Composite polyester membranes with embedded dendrimer hosts and bimetallic Fe/Ni nanoparticles:Synthesis, characterisation and application to water treatment, J. Nanopart. Res. 15(2013) 2-15.[110] Y.L. Ji, Q.F. An, Q. Zhao, W.D. Sun, K.R. Lee, H.L. Chen, C.J. Gao, Novel composite nanofiltration membranes containing zwitterions with high permeate flux and improved anti-fouling performance, J. Membr. Sci. 390-391(2012) 243-253.[111] Y. Chang, Y.J. Shih, C.J. Lai, H.H. Kung, S.Y. Jiang, Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood, Adv. Funct. Mater. 23(2013) 1100-1110.[112] Q.F. An, W.D. Sun, Q. Zhao, Y.L. Ji, C.J. Gao, Study on a novel nanofiltration membrane prepared by interfacial polymerization with zwitterionic amine monomers, J. Membr. Sci. 431(2013) 171-179.[113] Y.F. Mi, Q. Zhao, Y.L. Ji, Q.F. An, C.J. Gao, A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance, J. Membr. Sci. 490(2015) 311-320.[114] X.D. Weng, Y.L. Ji, R. Ma, F.Y. Zhao, Q.F. An, C.J. Gao, Superhydrophilic and antibacterial zwitterionic polyamide nanofiltration membranes for antibiotics separation, J. Membr. Sci. 510(2016) 122-130.[115] R. Yang, J.J. Xu, G. Ozaydin-Ince, S.Y. Wong, K.K. Gleason, Surface-tethered zwitterionic ultrathin antifouling coatings on reverse osmosis membranes by initiated chemical vapor deposition, Chem. Mater. 23(2011) 1263-1272.[116] X. Li, Y.M. Cao, G.D. Kang, H.J. Yu, X.M. Jie, Q. Yuan, Surface modification of polyamide nanofiltration membrane by grafting zwitterionic polymers to improve the antifouling property, J. Appl. Polym. Sci. 131(2014) 205-212.[117] Y.L. Ji, Q.F. An, Y.S. Guo, W.S. Hung, K.R. Lee, C.J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles, J. Mater. Chem. A 4(2016) 4224-4231.[118] Y.L. Ji, Q. Zhao, Q.F. An, L.L. Shao, K.R. Lee, Z.K. Xu, C.J. Gao, Novel separation membranes based on zwitterionic colloid particles:Tunable selectivity and enhanced antifouling property, J. Mater. Chem. A 1(2013) 12213-12220.[119] M. Sairam, X.X. Loha, K. Li, A. Bismarck, J.H.G. Steinke, A.G. Livingston, Nanoporous asymmetric polyaniline films for filtration of organic solvents, J. Membr. Sci. 330(2009) 166-174.[120] H.Y. Li, D. Zhai, Y. Zhou, C.J. Gao, Polyamide composite NF membrane modified with polyaniline nanoparticles, CIESC J. 66(2015) 142-148(in Chinese).[121] J. Duan, E. Litwiller, I. Pinnau, Preparation and water desalination properties of POSS-polyamide nanocomposite reverse osmosis membranes, J. Membr. Sci. 473(2015) 157-164.[122] M. Dalwani, J. Zheng, M. Hempenius, M.J.T. Raaijmakers, C.M. Doherty, A. Hill, M. Wessling, N.E. Benes, Ultra-thin hybrid polyhedral silsesquioxane-polyamide films with potentially unlimited 2D dimensions, J. Mater. Chem. 22(2012) 14835-14838.[123] Y.R. He, Y.P. Tang, S.C. Tai, Concurrent removal of selenium and arsenic from water using polyhedral oligomeric silsesquioxane (POSS)-polyamide thin-film nanocomposite nanofiltration membranes, Ind. Eng. Chem. Res. 55(2016) 12929-12938. |
[1] | Yingli Li, Zhishuncheng Li, Guangfei Qu, Rui Li, Shuaiyu Liang, Junhong Zhou, Wei Ji, Huiming Tang. Mechanism, behaviour and application of iron nitrate modified carbon nanotube composites for the adsorption of arsenic in aqueous solutions[J]. 中国化学工程学报, 2023, 60(8): 26-36. |
[2] | Pan Wang, Mengdei Zhou, Zhuangxin Wei, Lu Liu, Tao Cheng, Xiaohua Tian, Jianming Pan. Preparation of bowl-shaped polydopamine surface imprinted polymer composite adsorbent for specific separation of 2′-deoxyadenosine[J]. 中国化学工程学报, 2023, 60(8): 69-79. |
[3] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[4] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[5] | Xinxin Li, Hongwei Shao, Shichao Zhang, Yong Li, Jingjing Gu, Qiang Huang, Jin Ran. Two dimensional MoS2 finding its way towards constructing high-performance alkaline recovery membranes[J]. 中国化学工程学报, 2023, 60(8): 155-164. |
[6] | Wenwen Zhang, Zhigang Xue, Liyun Cui, Haoliang Gao, Di Zhao, Rongfei Zhou, Weihong Xing. Synthesis of an IMF zeolite membrane for the separation of xylene isomer[J]. 中国化学工程学报, 2023, 60(8): 205-211. |
[7] | Hammad Saulat, Jianhua Yang, Tao Yan, Waseem Raza, Wensen Song, Gaohong He. Tungsten incorporated mobil-type eleven zeolite membranes: Facile synthesis and tuneable wettability for highly efficient separation of oil/water mixtures[J]. 中国化学工程学报, 2023, 60(8): 242-252. |
[8] | Yuan Liu, Hanting Xiong, Jingwen Chen, Shixia Chen, Zhenyu Zhou, Zheling Zeng, Shuguang Deng, Jun Wang. One-step ethylene separation from ternary C2 hydrocarbon mixture with a robust zirconium metal-organic framework[J]. 中国化学工程学报, 2023, 59(7): 9-15. |
[9] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. 中国化学工程学报, 2023, 59(7): 42-50. |
[10] | Borui Liu, Tao Zhang, Yi Zheng, Kailong Li, Hui Pan, Hao Ling. A dynamic control structure of liquid-only transfer stream distillation column[J]. 中国化学工程学报, 2023, 59(7): 135-145. |
[11] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[12] | Yafei Su, Xuke Zhang, Hui Li, Donglai Peng, Yatao Zhang. In-situ incorporation of halloysite nanotubes with 2D zeolitic imidazolate framework-L based membrane for dye/salt separation[J]. 中国化学工程学报, 2023, 58(6): 103-111. |
[13] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[14] | Shuangtai Liu, Lei He, Qiuxiang Yao, Xi Li, Linyang Wang, Jing Wang, Ming Sun, Xiaoxun Ma. Separation and analysis of six fractions in low temperature coal tar by column chromatography[J]. 中国化学工程学报, 2023, 58(6): 256-265. |
[15] | Wende Tian, Jiawei Zhang, Zhe Cui, Haoran Zhang, Bin Liu. Microscopic mechanism study and process optimization of dimethyl carbonate production coupled biomass chemical looping gasification system[J]. 中国化学工程学报, 2023, 58(6): 291-305. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||