Chinese Journal of Chemical Engineering ›› 2017, Vol. 25 ›› Issue (11): 1653-1675.DOI: 10.1016/j.cjche.2017.05.009
Siow Kee Lim1,2, Kunli Goh1,3, Tae-Hyun Bae1,3, Rong Wang1,4
收稿日期:
2016-12-27
修回日期:
2017-05-26
出版日期:
2017-11-28
发布日期:
2018-01-18
通讯作者:
Rong Wang,E-mail address:rwang@ntu.edu.sg
Siow Kee Lim1,2, Kunli Goh1,3, Tae-Hyun Bae1,3, Rong Wang1,4
Received:
2016-12-27
Revised:
2017-05-26
Online:
2017-11-28
Published:
2018-01-18
Contact:
Rong Wang,E-mail address:rwang@ntu.edu.sg
摘要: Separation of organic mixture is an inevitable process in most modern industrial processes. In the quest for a more sustainable and efficient separation, solvent-resistant nanofiltration (SRNF) has emerged as a promising answer. This is because SRNF is a membrane-based process which offers the key advantages of high efficacy and low energy intensity separation. In particular, polymer-based membranes can offer compelling opportunities for SRNF with unprecedented cost-effectiveness. As a result, intensive research efforts have been devoted into developing novel polymer-based membranes with solvent-resistant capacities as well as exploring potential applications in different types of industries. In this review, we aim to give an overview of the recent progress in the development of the state-of-the-art polymer-based membranes for SRNF in the first section. Emerging nanomaterials for mixed matrix and thin film nanocomposite membranes are also covered in this section. This is followed by a discussion on the current status of membrane engineering and SRNF membrane commercialization. In the third section, we highlight recent efforts in adopting SRNF for relevant industrial applications such as food, bio-refinery, petrochemical, fine chemical and pharmaceutical industries followed by separations of enantiomers in stereochemistry, homogeneous catalysis and ionic liquids. Finally, we offer a perspective and provide deeper insights to help shape future research direction in this very important field of SRNF.
Siow Kee Lim, Kunli Goh, Tae-Hyun Bae, Rong Wang. Polymer-based membranes for solvent-resistant nanofiltration:A review[J]. Chinese Journal of Chemical Engineering, 2017, 25(11): 1653-1675.
Siow Kee Lim, Kunli Goh, Tae-Hyun Bae, Rong Wang. Polymer-based membranes for solvent-resistant nanofiltration:A review[J]. Chin.J.Chem.Eng., 2017, 25(11): 1653-1675.
[1] P. Vandezande, L.E. Gevers, I.F. Vankelecom, Solvent resistant nanofiltration:Separating on a molecular level, Chem. Soc. Rev. 37(2008) 365-405.[2] P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G. Livingston, Molecular separation with organic solvent nanofiltration:A critical review, Chem. Rev. 114(2014) 10735-10806.[3] A.I. Schäfer, A.G. Fane, T.D Waite, Nanofiltration, Principles and Applications, Elsevier Advanced Technology, Oxford, 2005.[4] L.S. White, A.R. Nitsch, Solvent recovery from lube oil filtrates with a polyimide membrane, J. Membr. Sci. 179(2000) 267-274.[5] L.S. White, Development of large-scale applications in organic solvent nanofiltration and pervaporation for chemical and refining processes, J. Membr. Sci. 286(2006) 26-35.[6] B.M. Bhosle, R. Subramanian, K. Ebert, Deacidification of model vegetable oils using polymeric membranes, Eur. J. Lipid Sci. Tech. 107(2005) 746-753.[7] K. De Smet, S. Aerts, E. Ceulemans, I.F.J. Vankelecom, P.A. Jacobs, Nanofiltrationcoupled catalysis to combine the advantages of homogeneous and heterogeneous catalysis, Chem. Commun. (2001) 597-598.[8] I.F. Vankelecom, Polymeric membranes in catalytic reactors, Chem. Rev. 102(2002) 3779-3810.[9] J.T. Scarpello, D. Nair, L.M.F. dos Santos, L.S. White, A.G. Livingston, The separation of homogeneous organometallic catalysts using solvent resistant nanofiltration, J. Membr. Sci. 203(2002) 71-85.[10] S.S. Luthra, X.J. Yang, L.M.F. dos Santos, L.S. White, A.G. Livingston, Homogeneous phase transfer catalyst recovery and re-use using solvent resistant membranes, J. Membr. Sci. 201(2002) 65-75.[11] S. Aerts, H. Weyten, A. Buekenhoudt, L.E. Gevers, I.F. Vankelecom, P.A. Jacobs, Recycling of the homogeneous Co-Jacobsen catalyst through solvent-resistant nanofiltration (SRNF), Chem. Commun. (2004) 710-711.[12] A. Livingston, L. Peeva, S. Han, D. Nair, S.S. Luthra, L.S. White, L.M. Freitas Dos Santos, Membrane separation in green chemical processing:solvent nanofiltration in liquid phase organic synthesis reactions, Ann. N. Y. Acad. Sci. 984(2003) 123-141.[13] J.P. Sheth, Y.J. Qin, K.K. Sirkar, B.C. Baltzis, Nanofiltration-based diafiltration process for solvent exchange in pharmaceutical manufacturing, J. Membr. Sci. 211(2003) 251-261.[14] Y.H. See Toh, F.W. Lim, A.G. Livingston, Polymeric membranes for nanofiltration in polar aprotic solvents, J. Membr. Sci. 301(2007) 3-10.[15] Y.H. See-Toh, M. Silva, A. Livingston, Controlling molecular weight cut-off curves for highly solvent stable organic solvent nanofiltration (OSN) membranes, J. Membr. Sci. 324(2008) 220-232.[16] I. Sereewatthanawut, F.W. Lim, Y.S. Bhole, D. Ormerod, A. Horvath, A.T. Boam, A.G. Livingston, Demonstration of molecular purification in polar aprotic solvents by organic solvent nanofiltration, Org. Process. Res. Dev. 14(2010) 600-611.[17] J. Vanneste, D. Ormerod, G. Theys, D. Van Gool, B. Van Camp, S. Darvishmanesh, B. Van der Bruggen, Towards high resolution membrane-based pharmaceutical separations, J. Chem. Technol. Biot. 88(2013) 98-108.[18] S. Darvishmanesh, L. Firoozpour, J. Vanneste, P. Luis, J. Degreve, B. Van der Bruggen, Performance of solvent resistant nanofiltration membranes for purification of residual solvent in the pharmaceutical industry:Experiments and simulation, Green Chem. 13(2011) 3476-3483.[19] E.M. Rundquist, C.J. Pink, A.G. Livingston, Organic solvent nanofiltration:A potential alternative to distillation for solvent recovery from crystallisation mother liquors, Green Chem. 14(2012) 2197-2205.[20] C. Van Doorslaer, D. Glas, A. Peeters, A. Cano Odena, I. Vankelecom, K. Binnemans, P. Mertens, D. De Vos, Product recovery from ionic liquids by solvent-resistant nanofiltration:Application to ozonation of acetals and methyl oleate, Green Chem. 12(2010) 1726.[21] S. So, L.G. Peeva, E.W. Tate, R.J. Leatherbarrow, A.G. Livingston, Membrane enhanced peptide synthesis, Chem. Commun. 46(2010) 2808-2810.[22] S.U. So, L.G. Peeva, E.W. Tate, R.J. Leatherbarrow, A.G. Livingston, Organic solvent nanofiltration:A new paradigm in peptide synthesis, Org. Process. Res. Dev. 14(2010) 1313-1325.[23] R. Valadez-Blanco, F.C. Ferreira, R.F. Jorge, A.G. Livingston, A membrane bioreactor for biotransformations of hydrophobic molecules using organic solvent nanofiltration (OSN) membranes, J. Membr. Sci. 317(2008) 50-64.[24] P. Silva, L.G. Peeva, A.G. Livingston, Nanofiltration in organic solvents, In:Advanced Membrane Technology and Applications, John Wiley & Sons, Inc, Hoboken, New Jersey, 2008 pp. 451-467.[25] J.C. Jansen, S. Darvishmanesh, F. Tasselli, F. Bazzarelli, P. Bernardo, E. Tocci, K. Friess, A. Randova, E. Drioli, B. van der Bruggen, Influence of the blend composition on the properties and separation performance of novel solvent resistant polyphenylsulfone/polyimide nanofiltration membranes, J. Membr. Sci. 447(2013) 107-118.[26] C. Guizard, A. Ayral, A. Julbe, Potentiality of organic solvents filtration with ceramic membranes. A comparison with polymer membranes, Desalination 147(2002) 275-280.[27] T. Tsuru, M. Miyawaki, H. Kondo, T. Yoshioka, M. Asaeda, Inorganic porous membranes for nanofiltration of nonaqueous solutions, Sep. Purif. Technol. 32(2003) 105-109.[28] T. Tsuru, M. Narita, R. Shinagawa, T. Yoshioka, Nanoporous titania membranes for permeation and filtration of organic solutions, Desalination 233(2008) 1-9.[29] A. Dobrak, B. Verrecht, H. Van den Dungen, A. Buekenhoudt, I.F.J. Vankelecom, B. Van der Bruggen, Solvent flux behavior and rejection characteristics of hydrophilic and hydrophobic mesoporous and microporous TiO2 and ZrO2 membranes, J. Membr. Sci. 346(2010) 344-352.[30] A. Buekenhoudt, F. Bisignano, G. De Luca, P. Vandezande, M. Wouters, K. Verhulst, Unravelling the solvent flux behaviour of ceramic nanofiltration and ultrafiltration membranes, J. Membr. Sci. 439(2013) 36-47.[31] K. Goh, H.E. Karahan, L. Wei, T.H. Bae, A.G. Fane, R. Wang, Y. Chen, Carbon nanomaterials for advancing separation membranes:A strategic perspective, Carbon 109(2016) 694-710.[32] S. Hermans, H. Marien, C. Van Goethem, I.F.J. Vankelecom, Recent developments in thin film (nano)composite membranes for solvent resistant nanofiltration, Curr. Opin. Chem. Eng. 8(2015) 45-54.[33] L.G. Peeva, M. Sairam, A.G. Livingston, 2.05-Nanofiltration operations in nonaqueous systems, in:E. Drioli, L. Giorno (Eds.), Comprehensive Membrane Science and Engineering, Elsevier, Oxford 2010, pp. 91-113.[34] J. Mulder, Basic Principles of Membrane Technology, 2nd ed Kluwer Academic, Dordrecht, Boston, 1996.[35] K. Vanherck, A. Cano-Odena, G. Koeckelberghs, T. Dedroog, I. Vankelecom, A simplified diamine crosslinking method for PI nanofiltration membranes, J. Membr. Sci. 353(2010) 135-143.[36] K. Vanherck, P. Vandezande, S.O. Aldea, I.F.J. Vankelecom, Cross-linked polyimide membranes for solvent resistant nanofiltration in aprotic solvents, J. Membr. Sci. 320(2008) 468-476.[37] K. Vanherck, G. Koeckelberghs, I.F.J. Vankelecom, Crosslinking polyimides for membrane applications:A review, Prog. Polym. Sci. 38(2013) 874-896.[38] P.S. Tin, T.S. Chung, Y. Liu, R. Wang, S.L. Liu, K.P. Pramoda, Effects of cross-linking modification on gas separation performance of Matrimid membranes, J. Membr. Sci. 225(2003) 77-90.[39] Y. Liu, R. Wang, T.S. Chung, Chemical cross-linking modification of polyimide membranes for gas separation, J. Membr. Sci. 189(2001) 231-239.[40] K. Hendrix, K. Vanherck, I.F.J. Vankelecom, Optimization of solvent resistant nanofiltration membranes prepared by the in-situ diamine crosslinking method, J. Membr. Sci. 421(2012) 15-24.[41] I. Soroko, M.P. Lopes, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN):Part A. Effect of polymer/solvent/non-solvent system choice, J. Membr. Sci. 381(2011) 152-162.[42] I. Soroko, M. Makowski, F. Spill, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part B:Analysis of evaporation step and the role of a cosolvent, J. Membr. Sci. 381(2011) 163-171.[43] I. Soroko, M. Sairam, A.G. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN). Part C. Effect of polyimide characteristics, J. Membr. Sci. 381(2011) 172-182.[44] S.M. Dutczak, F.P. Cuperus, M. Wessling, D.F. Stamatialis, New crosslinking method of polyamide-imide membranes for potential application in harsh polar aprotic solvents, Sep. Purif. Technol. 102(2013) 142-146.[45] K. Hendrix, M. Van Eynde, G. Koeckelberghs, I.F.J. Vankelecom, Crosslinking of modified poly(ether ether ketone) membranes for use in solvent resistant nanofiltration, J. Membr. Sci. 447(2013) 212-221.[46] X.X. Loh, M. Sairam, J.H. Steinke, A.G. Livingston, A. Bismarck, K. Li, Polyaniline hollow fibres for organic solvent nanofiltration, Chem. Commun. (2008) 6324-6326.[47] X.X. Loh, M. Sairam, A. Bismarck, J.H.G. Steinke, A.G. Livingston, K. Li, Crosslinked integrally skinned asymmetric polyaniline membranes for use in organic solvents, J. Membr. Sci. 326(2009) 635-642.[48] M. Sairam, X.X. Loh, K. Li, A. Bismarck, J.H.G. Steinke, A.G. Livingston, Nanoporous asymmetric polyaniline films for filtration of organic solvents, J. Membr. Sci. 330(2009) 166-174.[49] M. Sairam, X.X. Loh, Y. Bhole, I. Sereewatthanawut, K. Li, A. Bismarck, J.H.G. Steinke, A.G. Livingston, Spiral-wound polyaniline membrane modules for organic solvent nanofiltration (OSN), J. Membr. Sci. 349(2010) 123-129.[50] I. Struzynska-Piron, J. Loccufier, L. Vanmaele, I.F. Vankelecom, Synthesis of solvent stable polymeric membranes via UV depth-curing, Chem. Commun. 49(2013) 11494-11496.[51] I. Struzynska-Piron, M.R. Bilad, J. Loccufier, L. Vanmaele, I.F.J. Vankelecom, Influence of UV curing on morphology and performance of polysulfone membranes containing acrylates, J. Membr. Sci. 462(2014) 17-27.[52] A.K. Ho?da, B. Aernouts, W. Saeys, I.F.J. Vankelecom, Study of polymer concentration and evaporation time as phase inversion parameters for polysulfone-based SRNF membranes, J. Membr. Sci. 442(2013) 196-205.[53] A.K. Ho?da, I.F.J. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part A:Influence of high molecular weight additives, J. Membr. Sci. 450(2014) 512-521.[54] A.K. Ho?da, I.F.J. Vankelecom, Integrally skinned PSf-based SRNF-membranes prepared via phase inversion-Part B:Influence of low molecular weight additives, J. Membr. Sci. 450(2014) 499-511.[55] I.B. Valtcheva, S.C. Kumbharkar, J.F. Kim, Y. Bhole, A.G. Livingston, Beyond polyimide:Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci. 457(2014) 62-72.[56] I.B. Valtcheva, P. Marchetti, A.G. Livingston, Cross linked polybenzimidazole membranes for organic solvent nanofiltration (OSN):Analysis of crosslinking reaction mechanism and effects of reaction parameters, J. Membr. Sci. 493(2015) 568-579.[57] X.F. Li, S. De Feyter, I.F.J. Vankelecom, Poly(sulfone)/sulfonated poly(ether ether ketone) blend membranes:Morphology study and application in the filtration of alcohol based feeds, J. Membr. Sci. 324(2008) 67-75.[58] S. Darvishmanesh, J.C. Jansen, F. Tasselli, E. Tocci, P. Luis, J. Degreve, E. Drioli, B. van der Bruggen, Novel polyphenylsulfone membrane for potential use in solvent nanofiltration, J. Membr. Sci. 379(2011) 60-68.[59] S. Darvishmanesh, F. Tasselli, J.C. Jansen, E. Tocci, F. Bazzarelli, P. Bernardo, P. Luis, J. Degreve,E.Drioli,B.VanderBruggen,Preparationofsolventstablepolyphenylsulfone hollow fiber nanofiltration membranes, J. Membr. Sci. 384(2011) 89-96.[60] Solvay website, Markets & products, Featured products (Radel®, Veradel® and Acudel®), http://www.solvay.com/en/markets-and-products/featured-products/index.html (Last accessed:August 8, 2017).[61] Y.C. Xu, X.Q. Cheng, J. Long, L. Shao, A novel monoamine modification strategy toward high-performance organic solvent nanofiltration (OSN) membrane for sustainable molecular separations, J. Membr. Sci. 497(2016) 77-89.[62] D.Y. Koh, B.A. McCool, H.W. Deckman, R.P. Lively, Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes, Science 353(2016) 804-807.[63] A.G. Fane, R. Wang, M.X. Hu, Synthetic membranes for water purification:Status and future, Angew. Chem. Int. Ed. 54(2015) 3368-3386.[64] M.F. Jimenez Solomon, Y. Bhole, A.G. Livingston, High flux membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization with solvent activation, J. Membr. Sci. 423-424(2012) 371-382.[65] S.-P. Sun, T.-S. Chung, K.-J. Lu, S.-Y. Chan, Enhancement of flux and solvent stability of Matrimid® thin-film composite membranes for organic solvent nanofiltration, AIChE J. 60(2014) 3623-3633.[66] M.F. Jimenez Solomon, Y. Bhole, A.G. Livingston, High flux hydrophobic membranes for organic solvent nanofiltration (OSN)-Interfacial polymerization, surface modification and solvent activation, J. Membr. Sci. 434(2013) 193-203.[67] H.Q. Zhang, Y.J. Zhang, L.B. Li, S. Zhao, H.O. Ni, S.K. Cao, J.T. Wang, Cross-linked polyacrylonitrile/polyethyleneimine-polydimethylsiloxane composite membrane for solvent resistant nanofiltration, Chem. Eng. Sci. 106(2014) 157-166.[68] S. Karan, Z. Jiang, A.G. Livingston, Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation, Science 348(2015) 1347-1351.[69] M.F. Jimenez-Solomon, Q. Song, K.E. Jelfs, M. Munoz-Ibanez, A.G. Livingston, Polymer nanofilms with enhanced microporosity by interfacial polymerization, Nat. Mater. 15(2016) 760-767.[70] L.E.M. Gevers, S. Aldea, I.F.J. Vankelecom, P.A. Jacobs, Optimisation of a lab-scale method for preparation of composite membranes with a filled dense top-layer, J. Membr. Sci. 281(2006) 741-746.[71] L.E.M. Gevers, I.F.J. Vankelecom, P.A. Jacobs, Solvent-resistant nanofiltration with filled polydimethylsiloxane (PDMS) membranes, J. Membr. Sci. 278(2006) 199-204.[72] N. Stafie, D.F. Stamatialis, M. Wessling, Effect of PDMS cross-linking degree on the permeation performance of PAN/PDMS composite nanofiltration membranes, Sep. Purif. Technol. 45(2005) 220-231.[73] S. Aerts, A. Vanhulsel, A. Buekenhoudt, H. Weyten, S. Kuypers, H. Chen, M. Bryjak, L.E.M. Gevers, I.F.J. Vankelecom, P.A. Jacobs, Plasma-treated PDMS-membranes in solvent resistant nanofiltration:Characterization and study of transport mechanism, J. Membr. Sci. 275(2006) 212-219.[74] E. Florian, M. Modesti, M. Ulbricht, Preparation and characterization of novel solvent-resistant nanofiltration composite membranes based on crosslinked polyurethanes, Ind. Eng. Chem. Res. 46(2007) 4891-4899.[75] X.F. Li, P. Vandezande, I.F.J. Vankelecom, Polypyrrole modified solvent resistant nanofiltration membranes, J. Membr. Sci. 320(2008) 143-150.[76] L. Shao, X.Q. Cheng, Z.X. Wang, J. Ma, Z.H. Guo, Tuning the performance of polypyrrole-based solvent-resistant composite nanofiltration membranes by optimizing polymerization conditions and incorporating graphene oxide, J. Membr. Sci. 452(2014) 82-89.[77] A.V. Volkov, V.V. Parashchuk, D.F. Stamatialis, V.S. Khotimsky, V.V. Volkov, M. Wessling, High permeable PTMSP/PAN composite membranes for solvent nanofiltration, J. Membr. Sci. 333(2009) 88-93.[78] P.M. Budd, B.S. Ghanem, S. Makhseed, N.B. McKeown, K.J. Msayib, C.E. Tattershall, Polymers of intrinsic microporosity (PIMs):Robust, solution-processable, organic nanoporous materials, Chem. Commun. (2004) 230-231.[79] N.B. McKeown, Polymers of intrinsic microporosity, ISRN Materials Science 2012(2012) 1-16.[80] D. Fritsch, P. Merten, K. Heinrich, M. Lazar, M. Priske, High performance organic solvent nanofiltration membranes:Development and thorough testing of thin film composite membranes made of polymers of intrinsic microporosity (PIMs), J. Membr. Sci. 401(2012) 222-231.[81] P. Gorgojo, S. Karan, H.C. Wong, M.F. Jimenez-Solomon, J.T. Cabral, A.G. Livingston, Ultrathin polymer films with intrinsic microporosity:Anomalous solvent permeation and high flux membranes, Adv. Funct. Mater. 24(2014) 4729-4737.[82] J.K. Kim, S.Y. Yang, Y. Lee, Y. Kim, Functional nanomaterials based on block copolymer self-assembly, Prog. Polym. Sci. 35(2010) 1325-1349.[83] X.F. Li, C.A. Fustin, N. Lefevre, J.F. Gohy, S. De Feyter, J. De Baerdemaeker, W. Egger, I.F.J. Vankelecom, Ordered nanoporous membranes based on diblock copolymers with high chemical stability and tunable separation properties, J. Mater. Chem. 20(2010) 4333-4339.[84] E. Fontananova, G. Di Profio, F. Artusa, E. Drioli, Polymeric homogeneous composite membranes for separations in organic solvents, J. Appl. Polym. Sci. 129(2013) 1653-1659.[85] N. Joseph, P. Ahmadiannamini, R. Hoogenboom, I.F.J. Vankelecom, Layer-by-layer preparation of polyelectrolyte multilayer membranes for separation, Polm. Chem. 5(2014) 1817-1831.[86] Q. Zhao, Q.F.F. An, Y.L. Ji, J.W. Qian, C.J. Gao, Polyelectrolyte complex membranes for pervaporation, nanofiltration and fuel cell applications, J. Membr. Sci. 379(2011) 19-45.[87] X.F. Li, S. De Feyter, D.J. Chen, S. Aldea, P. Vandezande, F. Du Prez, I.F.J. Vankelecom, Solvent-resistant nanofiltration membranes based on multilayered polyelectrolyte complexes, Chem. Mater. 20(2008) 3876-3883.[88] X.F. Li, W. Goyens, P. Ahmadiannamini, W. Vanderlinden, S. De Feyter, I. Vankelecom, Morphology and performance of solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes:Study of preparation conditions, J. Membr. Sci. 358(2010) 150-157.[89] P. Ahmadiannamini, X.F. Li, W. Goyens, N. Joseph, B. Meesschaert, I.F.J. Vankelecom, Multilayered polyelectrolyte complex based solvent resistant nanofiltration membranes prepared from weak polyacids, J. Membr. Sci. 394(2012) 98-106.[90] P. Ahmadiannamini, X.F. Li, W. Goyens, B. Meesschaert, W. Vanderlinden, S. De Feyter, I.F.J. Vankelecom, Influence of polyanion type and cationic counter ion on the SRNF performance of polyelectrolyte membranes, J. Membr. Sci. 403(2012) 216-226.[91] D.J. Chen, Solvent-resistant nanofiltration membranes based on multilayered polyelectrolytes deposited on silicon composite, J. Appl. Polym. Sci. 129(2013) 3156-3161.[92] S. Ilyas, N. Joseph, A. Szymczyk, A. Volodin, K. Nijmeijer, W.M. de Vos, I.F.J. Vankelecom, Weak polyelectrolyte multilayers as tunable membranes for solvent resistant nanofiltration, J. Membr. Sci. 514(2016) 322-331.[93] J. da Silva Burgal, L.G. Peeva, S. Kumbharkar, A. Livingston, Organic solvent resistant poly(ether-ether-ketone) nanofiltration membranes, J. Membr. Sci. 479(2015) 105-116.[94] M.G. Buonomenna, G. Golemme, J.C. Jansen, S.H. Choi, Asymmetric PEEKWC membranes for treatment of organic solvent solutions, J. Membr. Sci. 368(2011) 144-149.[95] C. Ursino, S. Simone, L. Donato, S. Santoro, M.P. De Santo, E. Drioli, E. Di Nicolò, A. Figoli, ECTFE membranes produced by non-toxic diluents for organic solvent filtration separation, RSC Adv. 6(2016) 81001-81012.[96] D.J. Chen, X. Liu, D.D. Li, X.F. Li, Highly stable polysulfone solvent resistant nanofiltration membranes with internal cross-linking networks, RSC Adv. 6(2016) 29570-29575.[97] D.J. Chen, S.S. Yu, M. Yang, D.D. Li, X.F. Li, Solvent resistant nanofiltration membranes based on crosslinked polybenzimidazole, RSC Adv. 6(2016) 16925-16932.[98] S.M. Dutczak, C.R. Tanardi, K.K. Kopec, M. Wessling, D. Stamatialis, "Chemistry in a spinneret" to fabricate hollow fibers for organic solvent filtration, Sep. Purif. Technol. 86(2012) 183-189.[99] S.K. Lim, L. Setiawan, T.H. Bae, R. Wang, Polyamide-imide hollow fiber membranes crosslinked with amine-appended inorganic networks for application in solventresistant nanofiltration under low operating pressure, J. Membr. Sci. 501(2016) 152-160.[100] S.P. Sun, S.Y. Chan, T.S. Chung, A slow-fast phase separation (SFPS) process to fabricate dual-layer hollow fiber substrates for thin-film composite (TFC) organic solvent nanofiltration (OSN) membranes, Chem. Eng. Sci. 129(2015) 232-242.[101] S.P. Sun, S.Y. Chan, W.H. Xing, Y. Wang, T.S. Chung, Facile synthesis of dual-layer organic solvent nanofiltration (OSN) hollow fiber membranes, ACS Sustain. Chem. Eng. 3(2015) 3019-3023.[102] H. Siddique, E. Rundquist, Y. Bhole, L.G. Peeva, A.G. Livingston, Mixed matrix membranes for organic solvent nanofiltration, J. Membr. Sci. 452(2014) 354-366.[103] M.F. Jimenez-Solomon, P. Gorgojo, M. Munoz-Ibanez, A.G. Livingston, Beneath the surface:Influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration, J. Membr. Sci. 448(2013) 102-113.[104] S. Hermans, E. Dom, H. Marien, G. Koeckelberghs, I.F.J. Vankelecom, Efficient synthesis of interfacially polymerized membranes for solvent resistant nanofiltration, J. Membr. Sci. 476(2015) 356-363.[105] L. Pérez-Manríquez, A.R. Behzad, K.-V. Peinemann, Sub-6 nm thin cross-linked dopamine films with high pressure stability for organic solvent nanofiltration, Macromol. Mater. Eng 301(2016) 1437-1442.[106] Y.J. Zhang, H.Q. Zhang, Y.F. Li, H. Mao, G.H. Yang, J.T. Wang, Tuning the performance of composite membranes by optimizing PDMS content and cross-linking time for solvent resistant nanofiltration, Ind. Eng. Chem. Res. 54(2015) 6175-6186.[107] C. Liu, S. Kulprathipanja, A.M.W. Hillock, S. Husain, W.J. Koros, Recent progress in mixed-matrix membranes, In:Advanced Membrane Technology and Applications, Hoboken, New Jersey, 2008, pp. 787-819.[108] R. Mahajan, W.J. Koros, Factors controlling successful formation of mixed-matrix gas separation materials, Ind. Eng. Chem. Res. 39(2000) 2692-2696.[109] M.Y. Kariduraganavar, J.G. Varghese, S.K. Choudhari, R.H. Olley, Organic-inorganic hybrid membranes:Solving the trade-off phenomenon between permeation flux and selectivity in pervaporation, Ind. Eng. Chem. Res. 48(2009) 4002-4013.[110] H. Dong, X.Y. Qu, L. Zhang, L.H. Cheng, H.L. Chen, C.J. Gao, Preparation and characterization of surface-modified zeolite-polyamide thin film nanocomposite membranes for desalination, Desalin. Water Treat. 34(2011) 6-12.[111] K. Goh, Y. Chen, Controlling water transport in carbon nanotubes, Nano Today 14(2017) 13-15.[112] J. Kim, B. Van der Bruggen, The use of nanoparticles in polymeric and ceramic membrane structures:review of manufacturing procedures and performance improvement for water treatment, Environ. Pollut. 158(2010) 2335-2349.[113] T.T. Moore, W.J. Koros, Non-ideal effects in organic-inorganic materials for gas separation membranes, J. Mol. Struct. 739(2005) 87-98.[114] K. Goh, L. Setiawan, L. Wei, W. Jiang, R. Wang, Y. Chen, Fabrication of novel functionalized multi-walled carbon nanotube immobilized hollow fiber membranes for enhanced performance in forward osmosis process, J. Membr. Sci. 446(2013) 244-254.[115] E.S. Tarleton, J.P. Robinson, C.R. Millington, A. Nijmeijer, Non-aqueous nanofiltration:Solute rejection in low-polarity binary systems, J. Membr. Sci. 252(2005) 123-131.[116] L.E. Gevers, I.F. Vankelecom, P.A. Jacobs, Zeolite filled polydimethylsiloxane (PDMS) as an improved membrane for solvent-resistant nanofiltration (SRNF), Chem. Commun. (2005) 2500-2502.[117] K. Vanherck, A. Aerts, J. Martens, I. Vankelecom, Hollow filler based mixed matrix membranes, Chem. Commun. 46(2010) 2492-2494.[118] I. Soroko, A. Livingston, Impact of TiO2 nanoparticles on morphology and performance of crosslinked polyimide organic solvent nanofiltration (OSN) membranes, J. Membr. Sci. 343(2009) 189-198.[119] M. Namvar-Mahboub, M. Pakizeh, Development of a novel thin film composite membrane by interfacial polymerization on polyetherimide/modified SiO2 support for organic solvent nanofiltration, Sep. Purif. Technol. 119(2013) 35-45.[120] J.L.C. Rowsell, O.M. Yaghi, Metal-organic frameworks:a new class of porous materials, Micropor. Mesopor. Mat. 73(2004) 3-14.[121] B. Zornoza, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Metal organic framework based mixed matrix membranes:An increasingly important field of research with a large application potential, Micropor. Mesopor. Mat. 166(2013) 67-78.[122] H.B. Tanh Jeazet, C. Staudt, C. Janiak, Metal-organic frameworks in mixed-matrix membranes for gas separation, Dalton Trans. 41(2012) 14003-14027.[123] S. Basu, M. Maes, A. Cano-Odena, L. Alaerts, D.E. De Vos, I.F.J. Vankelecom, Solvent resistant nanofiltration (SRNF) membranes based on metal-organic frameworks, J. Membr. Sci. 344(2009) 190-198.[124] B.H. Jeong, E.M.V. Hoek, Y.S. Yan, A. Subramani, X.F. Huang, G. Hurwitz, A.K. Ghosh, A. Jawor, Interfacial polymerization of thin film nanocomposites:A new concept for reverse osmosis membranes, J. Membr. Sci. 294(2007) 1-7.[125] S. Sorribas, P. Gorgojo, C. Tellez, J. Coronas, A.G. Livingston, High flux thin film nanocomposite membranes based on metal-organic frameworks for organic solvent nanofiltration, J. Am. Chem. Soc. 135(2013) 15201-15208.[126] M. Peyravi, M. Jahanshahi, A. Rahimpour, A. Javadi, S. Hajavi, Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration, Chem. Eng. J. 241(2014) 155-166.[127] C. Van Goethem, R. Verbeke, S. Hermans, R. Bernstein, I.F.J. Vankelecom, Controlled positioning of MOFs in interfacially polymerized thin-film nanocomposites, J. Mater. Chem. A 4(2016) 16368-16376.[128] K. Goh, L. Setiawan, L. Wei, R. Si, A.G. Fane, R. Wang, Y. Chen, Graphene oxide as effective selective barriers on a hollow fiber membrane for water treatment process, J. Membr. Sci. 474(2015) 244-253.[129] K. Goh, J.K. Heising, Y. Yuan, H.E. Karahan, L. Wei, S. Zhai, J.X. Koh, N.M. Htin, F. Zhang, R. Wang, A.G. Fane, M. Dekker, F. Dehghani, Y. Chen, Sandwicharchitectured poly(lactic acid)-graphene composite food packaging films, ACS Appl. Mater. Interfaces 8(2016) 9994-10004.[130] L. Huang, Y. Li, Q. Zhou, W. Yuan, G. Shi, Graphene oxide membranes with tunable semipermeability in organic solvents, Adv. Mater. 27(2015) 3797-3802.[131] K. Goh, W.C. Jiang, H.E. Karahan, S.L. Zhai, L. Wei, D.S. Yu, A.G. Fane, R. Wang, Y. Chen, All-carbon nanoarchitectures as high-performance separation membranes with superior stability, Adv. Funct. Mater. 25(2015) 7348-7359.[132] L. Huang, J. Chen, T. Gao, M. Zhang, Y. Li, L. Dai, L. Qu, G. Shi, Reduced graphene oxide membranes for ultrafast organic solvent nanofiltration, Adv. Mater. 28(2016) 8669-8674.[133] R. Ding, H.Q. Zhang, Y.F. Li, J.T. Wang, B.B. Shi, H. Mao, J.C. Dang, J.D. Liu, Graphene oxide-embedded nanocomposite membrane for solvent resistant nanofiltration with enhanced rejection ability, Chem. Eng. Sci. 138(2015) 227-238.[134] X.L. Wu, L. Hao, J.K. Zhang, X. Zhang, J.T. Wang, J.D. Liu, Polymer-Ti3C2Tx composite membranes to overcome the trade-off in solvent resistant nanofiltration for alcohol-based system, J. Membr. Sci. 515(2016) 175-188.[135] H. Mao, H. Zhang, Y. Li, Y. Xue, F. Pei, J. Wang, J. Liu, Tunable solvent permeation properties of thin film nanocomposite membrane by constructing dual-pathways using cyclodextrins for organic solvent nanofiltration, ACS Sustain. Chem. Eng. 3(2015) 1925-1933.[136] H.Q. Zhang, H. Mao, J.T. Wang, R. Ding, Z. Du, J.D. Liu, S.K. Cao, Mineralizationinspired preparation of composite membranes with polyethyleneiminenanoparticle hybrid active layer for solvent resistant nanofiltration, J. Membr. Sci. 470(2014) 70-79.[137] Y.F. Li, H. Mao, H.Q. Zhang, G.H. Yang, R. Ding, J.T. Wang, Tuning the microstructure and permeation property of thin film nanocomposite membrane by functionalized inorganic nanospheres for solvent resistant nanofiltration, Sep. Purif. Technol. 165(2016) 60-70.[138] M. Namvar-Mahboub, M. Pakizeh, S. Davari, Preparation and characterization of UZM-5/polyamide thin film nanocomposite membrane for dewaxing solvent recovery, J. Membr. Sci. 459(2014) 22-32.[139] A. Dobrak-Van Berlo, I.F.J. Vankelecom, B. Van der Bruggen, Parameters determining transport mechanisms through unfilled and silicalite filled PDMS-based membranes and dense PI membranes in solvent resistant nanofiltration:Comparison with pervaporation, J. Membr. Sci. 374(2011) 138-149. |
[1] | Wensheng Li, Liangyuan Qi, Daolin Ye, Wei Cai, Weiyi Xing. Facile modification of aluminum hypophosphate and its flame retardancy for polystyrene[J]. 中国化学工程学报, 2023, 60(8): 90-98. |
[2] | Jing Huang, Honghui Cai, Qian Zhao, Yunpeng Zhou, Haibo Liu, Jing Wang. Dual-functional pyrene implemented mesoporous silicon material used for the detection and adsorption of metal ions[J]. 中国化学工程学报, 2023, 60(8): 108-117. |
[3] | Yong Xu, Qingbai Chen, Yang Gao, Jianyou Wang, Huiqing Fan, Fei Zhao. Performance comparison of lithium fractionation from magnesium via continuous selective nanofiltration/electrodialysis[J]. 中国化学工程学报, 2023, 59(7): 42-50. |
[4] | Sufei Wang, Mengjie Hao, Danyang Xiao, Tianmiao Zhang, Hua Li, Zhongshan Chen. Synthesis of porous carbon nanomaterials and their application in tetracycline removal from aqueous solutions[J]. 中国化学工程学报, 2023, 59(7): 200-209. |
[5] | Shanghong Ma, Haitao Zhang, Jianbo Qu, Xiuzhong Zhu, Qingfei Hu, Jianyong Wang, Peng Ye, Futao Sai, Shiwei Chen. Preparation of waterborne polyurethane/β-cyclodextrin composite nanosponge by ion condensation method and its application in removing of dyes from wastewater[J]. 中国化学工程学报, 2023, 58(6): 124-136. |
[6] | Haike Li, Xindong Li, Guozai Ouyang, Lang Li, Zhaohuang Zhong, Meng Cai, Wenhao Li, Wanfu Huang. Tannic acid/Fe3+ interlayer for preparation of high-permeability polyetherimide organic solvent nanofiltration membranes for organic solvent separation[J]. 中国化学工程学报, 2023, 57(5): 17-29. |
[7] | Yongbo Liu, Zhihao Si, Cong Ren, Hanzhu Wu, Peng Zhan, Yuqing Peng, Peiyong Qin. Ultrathin polyamide nanofiltration membrane prepared by triazine-based porous organic polymer as interlayer for dye removal[J]. 中国化学工程学报, 2023, 57(5): 193-201. |
[8] | Aneela Sabir, Wail Falath, Muhammad Shafiq, Nafisa Gull, Maria Wasim, Karl I. Jacob. Effective desalination and anti-biofouling performance via surface immobilized MWCNTs on RO membrane[J]. 中国化学工程学报, 2023, 56(4): 33-45. |
[9] | Kai Zhang, Huan-Huan Wu, Hui-Qian Huo, Yan-Li Ji, Yong Zhou, Cong-Jie Gao. Recent advances in nanofiltration, reverse osmosis membranes and their applications in biomedical separation field[J]. 中国化学工程学报, 2022, 49(9): 76-99. |
[10] | Fu Yang, Ruyi Wang, Shijian Zhou, Xuyu Wang, Yan Kong, Shuying Gao. Mesopore-encaged V-Mn oxides: Progressive insertion approach triggering reconstructed active sites to enhance catalytic oxidative desulfuration[J]. 中国化学工程学报, 2022, 45(5): 182-193. |
[11] | Mingxia Tian, Aili Wang, Hengbo Yin. Evolution of copper nanowires through coalescing of copper nanoparticles induced by aliphatic amines and their electrical conductivities in polyester films[J]. 中国化学工程学报, 2022, 44(4): 284-291. |
[12] | Qi Liu, Gao Cheng, Ming Sun, Weixiong Yu, Xiaohong, Zeng, Shichang Tang, Yongfeng li, Lin Yu. A facile preparation of hausmannite as a high-performance catalyst for toluene combustion[J]. 中国化学工程学报, 2022, 44(4): 392-401. |
[13] | Xiangzhao Hu, Junjie Sun, Wanzhen Zheng, Sixing Zheng, Yu Xie, Xiang Gao, Bin Yang, Zhongjian Li, Lecheng Lei, Yang Hou. Layered bismuth oxide/bismuth sulfide supported on carrageenan derived carbon for efficient carbon dioxide electroreduction to formate[J]. 中国化学工程学报, 2022, 43(3): 116-123. |
[14] | Yixuan Gong, Jiasai Yao, Ping Wang, Zhenxing Li, Hongjun Zhou, Chunming Xu. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting[J]. 中国化学工程学报, 2022, 43(3): 282-296. |
[15] | Shufen Zhang, Wei Ma, Bingtao Tang, Bin Shan. Innovation and application of dyes with high fixation[J]. 中国化学工程学报, 2022, 51(11): 146-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||