[1] M.R. Rahimpour, M.H. Khademi, A.M. Bahmanpour, A comparison of conventional and optimized thermally coupled reactors for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. Sci. 65(23) (2010) 6206-6214.[2] K.J. Woo, S.H. Kang, S.M. Kim, et al., Performance of a slurry bubble column reactor for Fischer-Tropsch synthesis:Determination of optimum condition, Fuel Process. Technol. 91(4) (2010) 434-439.[3] R.M. de Deugd, F. Kapteijn, J.A. Moulijn, Trends in Fischer-Tropsch reactor technology-Opportunities for structured reactors, Top. Catal. 26(1-4) (2013) 29-39.[4] P. Narataruksa, S. Tungkamani, K. Pana-Suppamassadu, et al., Conversion enhancement of tubular fixed-bed reactor for Fischer-Tropsch synthesis using static mixer, J. Nat. Gas Chem. 21(4) (2012) 435-444.[5] X.P. Dai, P.Z. Liu, Y. Shi, et al., Fischer-Tropsch synthesis in a bench-scale two-stage multitubular fixed-bed reactor:Simulation and enhancement in conversion and diesel selectivity, Chem. Eng. Sci. 105(2014) 1-11.[6] G.P. Laan, A. Beenackers, R. Krishna, Multicomponent reaction engineering model for Fe-catalysed Fischer-Tropsch synthesis in commercial scale bubble column slurry reactors, Chem. Eng. Sci. (1999) 54.[7] S.T. Sie, R. Krishna, Fundamentals and selection of advanced Fischer-Tropsch reactors, Appl. Catal. A Gen. 186(1) (1999) 55-70.[8] N. Rados, M.H. Al-Dahhan, M.P. Dudukovic, Modeling of the Fischer-Tropsch synthesis in slurry bubble column reactors, Catal. Today 79(2003) 211-218.[9] M.E. Dry, High quality diesel via the Fischer-Tropsch process-A review, J. Chem. Technol. Biotechnol. 77(1) (2002) 43-50.[10] L.C. Almeida, O. Sanz, J. D'olhaberriague, et al., Microchannel reactor for Fischer-Tropsch synthesis:Adaptation of a commercial unit for testing microchannel blocks, Fuel 110(2013) 171-177.[11] M.S. Shin, N. Park, M.J. Park, et al., Computational fluid dynamics model of a modular multichannel reactor for Fischer-Tropsch synthesis:Maximum utilization of catalytic bed by microchannel heat exchangers, Chem. Eng. J. 234(2013) 23-32.[12] J.J.C. Geerlings, J.H. Wilson, G.J. Kramer, et al., Fischer-Tropsch technology-From active site to commercial process, Appl. Catal. A Gen. 186(1) (1999) 27-40.[13] R. Krishna, S.T. Sie, Design and scale-up of the Fischer-Tropsch bubble column slurry reactor, Fuel Process. Technol. 64(1) (2000) 73-105.[14] S.T. Sie, R. Krishna, Fundamentals and selection of advanced Fischer-Tropsch reactors, Appl. Catal. A Gen. 186(1) (1999) 55-70.[15] C. Maretto, R. Krishna, Modelling of a bubble column slurry reactor for Fischer-Tropsch synthesis, Catal. Today 52(2) (1999) 279-289.[16] B. Jager, M.E. Dry, T. Shingles, et al., Experience with a new type of reactor for Fischer-Tropsch synthesis, Catal. Lett. 7(1) (1990) 293-301.[17] M.R. Rahimpour, S.M. Jokar, Z. Jamshidnejad, A novel slurry bubble column membrane reactor concept for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. Res. Des. 90(3) (2012) 383-396.[18] L.C. Almeida, O. Sanz, D. Merino, et al., Kinetic analysis and microstructured reactors modeling for the Fischer-Tropsch synthesis over a Co-Re/Al2O3 catalyst, Catal. Today 215(2013) 103-111.[19] Y.N. Wang, Y.Y. Xu, Y.W. Li, et al., Heterogeneous modeling for fixed-bed Fischer-Tropsch synthesis:Reactor model and its applications, Chem. Eng. Sci. 58(3) (2003) 867-875.[20] M.R. Rahimpour, H. Elekaei, A comparative study of combination of Fischer-Tropsch synthesis reactors with hydrogen-permselective membrane in GTL technology, Fuel Process. Technol. 90(6) (2009) 747-761.[21] M. Bayat, M.R. Rahimpour, B. Moghtaderi, Genetic algorithm strategy (GA) for optimization of a novel dual-stage slurry bubble column membrane configuration for Fischer-Tropsch synthesis in gas to liquid (GTL) technology, J. Nat. Gas Sci. Eng. 3(4) (2011) 555-570.[22] N.A. Mamonov, L.M. Kustov, S.A. Alkhimov, et al., One-dimensional heterogeneous model of a Fischer-Tropsch synthesis reactor with a fixed catalyst bed in the isothermal granules approximation, Catal. Ind. 5(3) (2013) 223-231.[23] N. Moazami, H. Mahmoudi, K. Rahbar, et al., Catalytic performance of cobalt-silica catalyst for Fischer-Tropsch synthesis:Effects of reaction rates on efficiency of liquid synthesis, Chem. Eng. Sci. 134(2015) 374-384.[24] N. Moazami, M.L. Wyszynski, H. Mahmoudi, et al., Modelling of a fixed bed reactor for Fischer-Tropsch synthesis of simulated N2-rich syngas over Co/SiO2:Hydrocarbon production, Fuel 154(2015) 140-151.[25] N. Park, J.R. Kim, Y. Yoo, et al., Modeling of a pilot-scale fixed-bed reactor for ironbased Fischer-Tropsch synthesis:Two-dimensional approach for optimal tube diameter, Fuel 122(2014) 229-235.[26] J. Na, K.S. Kshetrimayum, U. Lee, et al., Multi-objective optimization of microchannel reactor for Fischer-Tropsch synthesis using computational fluid dynamics and genetic algorithm, Chem. Eng. J. 313(2017) 1521-1534.[27] Y. Li, G. Xie, T. Lei, et al., A CFD model for gas uniform distribution in turbulent flow for the production of titanium pigment in chloride process, Chin. J. Chem. Eng. 24(6) (2016) 749-756.[28] S. Wang, B. Shao, R. Liu, et al., Comparison of numerical simulations and experiments in conical gas-solid spouted bed, Chin. J. Chem. Eng. 23(10) (2015) 1579-1586.[29] F.A.N. Fernandes, E.M.M. Sousa, Fischer-Tropsch synthesis product grade optimization in a fluidized bed reactor, AIChE J. 52(8) (2006) 2844-2850.[30] M.R. Rahimpour, H. Elekaei, Optimization of a novel combination of fixed and fluidized-bed hydrogen-permselective membrane reactors for Fischer-Tropsch synthesis in GTL technology, Chem. Eng. J. 152(2) (2009) 543-555.[31] M.E. Dry, Practical and theoretical aspects of the catalytic Fischer-Tropsch process, Appl. Catal. A Gen. 138(2) (1996) 319-344.[32] X. Lan, C. Xu, G. Wang, et al., CFD modeling of gas-solid flow and cracking reaction in two-stage riser FCC reactors, Chem. Eng. Sci. 64(17) (2009) 3847-3858.[33] C. Wu, Y. Cheng, Y. Ding, et al., CFD-DEM simulation of gas-solid reacting flows in fluid catalytic cracking (FCC) process, Chem. Eng. Sci. 65(1) (2010) 542-549.[34] Q. Xue, T.J. Heindel, R.O. Fox, A CFD model for biomass fast pyrolysis in fluidized-bed reactors, Chem. Eng. Sci. 66(11) (2011) 2440-2452.[35] K. Papadikis, S. Gu, A.V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B:Heat, momentum and mass transport in bubbling fluidised beds, Chem. Eng. Sci. 64(5) (2009) 1036-1045.[36] K. Papadikis, S. Gu, A.V. Bridgwater, CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors:Modelling the impact of biomass shrinkage, Chem. Eng. J. 149(1) (2009) 417-427.[37] M.J.V. Goldschmidt, J.A.M. Kuipers, W.P.M. Van Swaaij, Hydrodynamic modelling of dense gas-fluidised beds using the kinetic theory of granular flow:Effect of coefficient of restitution on bed dynamics, Chem. Eng. Sci. 56(2) (2001) 571-578.[38] S. Benyahia, H. Arastoopour, T.M. Knowlton, et al., Simulation of particles and gas flow behavior in the riser section of a circulating fluidized bed using the kinetic theory approach for the particulate phase, Powder Technol. 112(1) (2000) 24-33.[39] A. Almuttahar, F. Taghipour, Computational fluid dynamics of high density circulating fluidized bed riser:Study of modeling parameters, Powder Technol. 185(1) (2008) 11-23.[40] A. Neri, D. Gidaspow, Riser hydrodynamics:Simulation using kinetic theory, AIChE J. 46(1) (2000) 52-67.[41] S. Dasgupta, R. Jackson, S. Sundaresan, Turbulent gas-particle flow in vertical risers, AIChE J. 40(2) (1994) 215-228.[42] E.J. Bolio, J.L. Sinclair, Gas turbulence modulation in the pneumatic conveying of massive particles in vertical tubes, Int. J. Multiphase Flow 21(6) (1995) 985-1001.[43] C.M. Hrenya, J.L. Sinclair, Effects of particle-phase turbulence in gas-solid flows, AIChE J. 43(4) (1997) 853-869.[44] J. He, O. Simonin, Non-equilibrium prediction of the particle-phase stress tensor in vertical pneumatic conveying, ASME 166(1993) 253-263.[45] R. Garg, J. Galvin, T. Li, Open-source MFIX-DEM software for gas-solids flows:Part I-Verification studies, Powder Technol. 220(2012) 122-137.[46] S. Benyahia, M. Syamlal, T.J. O'Brien, Evaluation of boundary conditions used to model dilute, turbulent gas/solids flows in a pipe, Powder Technol. 156(2) (2005) 62-72.[47] S. Benyahia, M. Syamlal, T.J. O'Brien, Study of the ability of multiphase continuum models to predict core-annulus flow, AIChE J. 53.10(2007) 2549-2568.[48] P.C. Johnson, R. Jackson, Frictional-collisional constitutive relations for granular materials, with application to plane shearing, J. Fluid Mech. 176(1987) 67-93.[49] C. Lun, S.B. Savage, D.J. Jeffrey, et al., Kinetic theories of granular flow:Simple shear of inelastic particles and general deformations of nearly elastic particles, J. Fluid Mech. 140(1984) 223-256.[50] D. Gidaspow, L. Huilin, Collisional viscosity of FCC particles in a CFB, AIChE J. 42(9) (1996) 2503-2510.[51] L. Huilin, H. Yurong, D. Gidaspow, Hydrodynamic modelling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow, Chem. Eng. Sci. 58(7) (2003) 1197-1205.[52] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ. 66(1) (1987) 19-50.[53] M. Syamlal, D. Gidaspow, Hydrodynamics of fluidization:Prediction of wall to bed heat transfer coefficients, AIChE J. 31(1) (1985) 127-135.[54] D.J. Gunn, Transfer of heat or mass to particles in fixed and fluidised beds, Int. J. Heat Mass Transf. 21(4) (1978) 467-476.[55] H. Atashi, F. Siami, A.A. Mirzaei, et al., Kinetic study of Fischer-Tropsch process on titania-supported cobalt-manganese catalyst, J. Ind. Eng. Chem. 16(6) (2010) 952-961.[56] J. Yang, Y. Liu, J. Chang, et al., Detailed kinetics of Fischer-Tropsch synthesis on an industrial Fe-Mn catalyst, Ind. Eng. Chem. Res. 42(21) (2003) 5066-5090.[57] M. Rahmati, M. Mehdi, M. Bargah-Soleimani, Rate equations for the Fischer-Tropsch reaction on a promoted iron catalyst, Can. J. Chem. Eng. 79(5) (2001) 800-804.[58] M.A. Marvast, M. Sohrabi, S. Zarrinpashne, et al., Fischer-Tropsch synthesis:Modeling and performance study for Fe-HZSM5 bifunctional catalyst, Chem. Eng. Technol. 28(1) (2005) 78-86.[59] Y.N. Wang, Y.Y. Xu, H.W. Xiang, et al., Modeling of catalyst pellets for Fischer-Tropsch synthesis, Ind. Eng. Chem. Res. 40(20) (2001) 4324-4335.[60] X. Zhu, X. Lu, X. Liu, et al., Heat transfer study with and without Fischer-Tropsch reaction in a fixed bed reactor with TiO2, SiO2, and SiC supported cobalt catalysts, Chem. Eng. J. 247(2014) 75-84.[61] G. Chabot, R. Guilet, P. Cognet, et al., A mathematical modeling of catalytic milli-fixed bed reactor for Fischer-Tropsch synthesis:Influence of tube diameter on Fischer Tropsch selectivity and thermal behavior, Chem. Eng. Sci. 127(2015) 72-83.[62] F.M. Dautzenberg, M. Mukherjee, Process intensification using multifunctional reactors, Chem. Eng. Sci. 56(2) (2001) 251-267.[63] P. Zhang, J.H. Duan, G.H. Chen, et al., Effect of bed characters on the direct synthesis of dimethyldichlorosilane in fluidized bed reactor, Sci. Rep. UK 5(2015) 1-8. |