[1] J. Deng, J. Zhao, Y. Zhang, A. Huang, X. Liu, X. Zhai, C. Wang, Thermal analysis of spontaneous combustion behavior of partially oxidized coal, Process Saf. Environ. Prot. 104(2016) 218-224. [2] X. Meng, M. Gao, R. Chu, G. Wu, Q. Fang, Multiple linear equation of pore structure and coal-oxygen diffusion on low temperature oxidation process of lignite, Chin. J. Chem. Eng. 24(6) (2016) 818-823. [3] Q. Lin, S. Wang, Y. Liang, S. Song, T. Ren, Analytical prediction of coal spontaneous combustion tendency:velocity range with high possibility of self-ignition, Fuel Process. Technol. 159(2017) 38-47. [4] Y. Teng, S. Lian, Q. Liu, Y. Liu, Y. Song, R. He, K. Zhi, Evolvement behavior of microstructure and H2O adsorption of lignite pyrolysis, Chin. J. Chem. Eng. 24(6) (2016) 803-810. [5] M.A. Smith, D. Glasser, Spontaneous combustion of carbonaceous stockpiles. Part Ⅱ. Factors affecting the rate of the low-temperature oxidation reaction, Fuel 84(9) (2005) 1161-1170. [6] S. Li, H. Yang, T.H. Fletcher, M. Dong, Model for the evolution of pore structure in a lignite particle during pyrolysis, Energy Fuel 29(8) (2015) 5322-5333. [7] V.S. Babu, M.S. Seehra, Modeling of disorder and X-ray diffraction in coal-based graphitic carbons, Carbon 34(10) (1996) 1259-1264. [8] Y. Chen, A. Furmann, M. Mastalerz, A. Schimmelmann, Quantitative analysis of shales by KBr-FTIR and micro-FTIR, Fuel 116(2014) 538-549. [9] X. Lin, C. Wang, K. Ideta, J. Miyawaki, Y. Nishiyama, Y. Wang, S. Yoon, I. Mochida, Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments, Fuel 118(2014) 257-264. [10] J. Xiang, F. Zeng, B. Li, L. Zhang, M. Li, H. Liang, Construction of macromolecular structural model of anthracite from Chengzhuang coal mine and its molecular simulation, J. Fuel Chem. Technol. 41(4) (2013) 391-400. [11] L. Han, H. Ma, Y. Li, J. Wu, H. Xu, Y. Wang, Construction of topological macromolecular side chains packing model:study unique relationship and differences in LCmicrostructures and properties of two analogous architectures with well-designed side attachment density, Macromolecules 48(4) (2015) 925-941. [12] W. Xia, C. Niu, Y. Li, Effect of heating process on the wettability of fine coals of various ranks, Can. J. Chem. Eng. 95(3) (2017) 475-478. [13] R.K. Singh, A.K. Singh, DFT calculations on molecular structure, spectral analysis, multiple interactions, reactivity, NLO property and molecular docking study of flavanol-2,4-dinitrophenylhydrazone, J. Mol. Struct. 1129(2017) 128-141. [14] S.R. Maidur, P.S. Patil, A. Ekbote, T.S. Chia, C.K. Quah, Molecular structure, secondand third-order nonlinear optical properties and DFT studies of a novel noncentrosymmetric chalcone derivative:(2E)-3-(4-fluorophenyl)-1-(4-{(1E)-(4-fluorophenyl)methylene amino}phen yl)prop-2-en-1-one, Spectrochim. Acta A 184(2017) 342-354. [15] K. Li, M. Vasiliu, C.R. McAlpin, Y. Yang, D.A. Dixon, K.J. Voorhees, M. Batzle, M.W. Liberatore, A.M. Herring, Further insights into the structure and chemistry of the Gilsonite asphaltene from a combined theoretical and experimental approach, Fuel 157(2015) 16-20. [16] Z.-H. Qin, H. Chen, Y.-J. Yan, C.-S. Li, L.-M. Rong, X.-Q. Yang, FTIR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents, Fuel Process. Technol. 133(2015) 14-19. [17] Y. Chen, M. Mastalerz, A. Schimmelmann, Characterization of chemical functional groups in macerals across different coal ranks via micro-FTIR spectroscopy, Int. J. Coal Geol. 104(2012) 22-33. [18] M.D. Guillen, M.J. Lglesias, A. Dominguez, C.G. Blanco, Semi-quantitative FTIR analysis of a coal tar pitch and its extracts and residues in several organic solvents, Energy Fuel 6(4) (1992) 518-525. [19] J.A. D'Angelo, P.C. Lyons, M. Mastalerz, E.L. Zodrow, Fossil cutin of Macroneuropteris scheuchzeri (Late Pennsylvanian seed fern, Canada), Int. J. Coal Geol. 105(2013) 137-140. [20] W. Jo, H. Choi, S. Kim, J. Yoo, D. Chun, Y. Rhim, J. Lim, S. Lee, Changes in spontaneous combustion characteristics of low-rank coal through pre-oxidation at low temperatures, Korean J. Chem. Eng. 32(2) (2015) 255-260. [21] T.K. Das, Thermogravimetric characterisation of maceral concentrates of Russian coking coals, Fuel 80(1) (2001) 97-106. [22] A. Drobniak, M. Mastalerz, Chemical evolution of Miocene wood:example from the Belchatow brown coal deposit, central Poland, Int. J. Coal Geol. 66(3) (2006) 157-178. [23] I. Handayani, Y. Paisal, S.K. Chaerun, S. Soepriyanto, FTIR analysis on organic sulfur distribution:aliphatic mercaptans in lignite, prior and after multistage artificial biotreatment process, Adv. Mater. Res. 1130(1022-6680) (2015) 503-506. [24] W. Zhang, S. Jiang, K. Wang, L. Wang, Y. Xu, Z. Wu, H. Shao, Y. Wang, M. Miao, Thermogravimetric dynamics and FTIR analysis on oxidation properties of low-rank coal at low and moderate temperatures, Int. J. Coal Prep. Util. 35(1) (2015) 39-50. [25] N. Wang, S. Zhu, Y. Yang, P. Wu, H. Zhang, Oxygen-containing function groups affected to waterproof of thermal upgraded lignite briquettes, Coal Sci. Technol. 38(3) (2010) 125-128. [26] X. Qi, D. Wang, H. Xin, G. Qi, An in situ testing method for analyzing the changes of active groups in coal oxidation at low temperatures, Spectrosc. Lett. 47(7) (2014) 495-503. [27] H. Machnikowska, A. Krzton, J. Machnikowski, The characterization of coal macerals by diffuse reflectance infrared spectroscopy, Fuel 81(2) (2002) 245-252. [28] F. Meng, J. Yu, A. Tahmasebi, Y. Han, H. Zhao, J. Lucas, T. Wall, Characteristics of chars from low-temperature pyrolysis of lignite, Energy Fuel 28(1) (2014) 275-284. [29] J. Xiao, S. Chen, Changes of infrared absorption wave number of aromatic-ring C_C bond of vitrinite and their significance, Sci. Bull. 43(12) (1998) 1048-1050. [30] L. Zhang, Z. Li, Y. Yang, Y. Zhou, B. Kong, J. Li, L. Si, Effect of acid treatment on the characteristics and structures of high-sulfur bituminous coal, Fuel 184(2016) 418-429. [31] R. Wang, G. Liu, J. Zhang, C.-L. Chou, J. Liu, Abundances of polycyclic aromatic hydrocarbons (PAHs) in 14 Chinese and American coals and their relation to coal rank and weathering, Energy Fuel 24(2010) 6061-6066. [32] M. Liu, Y. Duan, G. Ma, The effect of organic solvent thermal treatment on the physicochemical properties of lignite, Asia Pac. J. Chem. Eng. 10(5) (2015) 724-733. [33] Y. Zhang, X. Jing, K. Jing, L. Chang, W. Bao, Study on the pore structure and oxygencontaining functional groups devoting to the hydrophilic force of dewatered lignite, Appl. Surf. Sci. 324(2015) 90-98. [34] C.J. Pollock, K. Grubel, P.L. Holland, S. DeBeer, Experimentally quantifying smallmolecule bond activation using valence-to-core X-ray emission spectroscopy, J. Am. Chem. Soc. 135(32) (2013) 11803-11808. [35] Y. Ban, Y. Li, Y. Tang, Q. Liu, K. Zhi, Y. Wu, Y. Fan, Low-temperature oxidation gas products and spontaneous combustion tendency of Shengli lignite, Adv. Mater. Res. 953-954(2014) 1210-1214. |