[1] S. Molchanov, A. Gryff-Keller, Inhibition of 4-hydroxyphenylpyruvate dioxygenase by 2-[2-nitro-4-(trifluoromethyl)benzoyl]-1,3-cyclohexanedione, Acta Biochim. Pol. 56(3) (2009) 447-454.[2] C. Zhang, W. Lv, Q.H. Yang, Y. Liu, Graphene supported nano particles of Pt-Ni for CO oxidation, Appl. Surf. Sci. 258(20) (2012) 7795-7800.[3] D. Kalpogiannaki, C.-I. Martini, A. Nikopoulou, J.A. Nyxas, V. Pantazi, L.P. Hadjiarapoglou, Fused dihydrofurans from the one-pot, three-component reaction of 1,3-cyclohexanedione, iodobenzene diacetate and alkenes, Tetrahedron 69(5) (2013) 1566-1575.[4] R.W. Lewis, J.W. Botham, A review of the mode of toxicity and relevance to humans of the triketone herbicide 2-(4-methylsulfonyl-2-nitrobenzoyl)-1, 3-cyclohexanedione, Crit. Rev. Toxicol. 43(3) (2013) 185-199.[5] P. Zhou, D.Z. Li, S.W. Jin, S.H. Chen, Z.H. Zhang, Catalytic transfer hydrogenation of nitro compounds into amines over magnetic graphene oxide supported Pd nanoparticles, Int. J. Hydrog. Energy 41(34) (2016) 15218-15224.[6] W.H. Muller, Process for preparing 1,3-cyclohexanedione, USA Pat., 3922307, 1975.[7] W.H. Muller, T. Weil, Process for manufacture of 1,3-cyclohexanedione, USA Pat., 4028417, 1977.[8] J.B. Heather, P.D. Milano, Process for the production of acylated 1,3-dicarbonyl compounds, USA Pat., 4695673, 1987.[9] J.C. Sircar, A.I. Meyers, A convenient method for preparation of 1,3-cyclohexanedione, J. Org. Chem. 30(9) (1965) 3206-3207.[10] V. Elango, M.U. Norwood, R. Sakamuri, R.I.U. Warwick, A new process for the manufacture of 1,3-cyclohexanedione, Europe Pat., 0822173(A1), 1998.[11] Y.X. Hou, L.B. Xu, Z.J. Wei, Y.X. Liu, X.H. Li, S.G. Deng, Reaction process and kinetics of the selective hydrogenation of resorcinol into 1,3-cyclohexanedione, J. Taiwan Inst. Chem. Eng. 45(4) (2014) 1428-1434.[12] R.B. Thompson, Dihydroresorcinol-1,3-Cyclohexanedione, Org. Synth. 27(1947) 21-23.[13] D.I. Enache, G.J. Hutchings, S.H. Taylor, R. Natividad, S. Raymahasay, J.M. Winterbottom, et al., Experimental evaluation of a three-phase downflow capillary reactor, Ind. Eng. Chem. Res. 44(16) (2005) 6295-6303.[14] Z. Xu, Z.H. Hu, D. Xu, A method for preparing 1,3-cyclohexanedione, China Pat., 1680247 A, 2005.[15] S. Zhang, One kind of 1,3-cyclohexanedione industrial production methods, China Pat., 101381294, 2006.[16] D.I. Enache, G.J. Hutchings, S.H. Taylor, S. Raymahasay, J.M. Winterbottom, M.D. Mantle, et al., Multiphase hydrogenation of resorcinol in structured and heat exchange reactor systems influence of the catalyst and the reactor configuration, Catal. Today 128(1-2) (2007) 26-35.[17] R.B. Thompson, Dihydroresorcinol, Org. Synth. 3(1955) (2-&).[18] P. Makowski, R.D. Cakan, M. Antonietti, F. Goettmann, M.M. Titirici, Selective partial hydrogenation of hydroxy aromatic derivatives with palladium nanoparticles supported on hydrophilic carbon, Chem. Commun. (8) (2008) 999-1001.[19] Z. Wei, R. Pan, Y. Hou, Y. Yang, Y. Liu, Graphene-supported Pd catalyst for highly selective hydrogenation of resorcinol to 1, 3-cyclohexanedione through giant pi-conjugate interactions, Sci. Rep. 5(2015) https://doi.org/10.1038/srep 15664.[20] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al., Gaussian 09, Gaussian, Inc., Wallingford, CT, 2009.[21] R.K. Dennington, T., J. Millam, GaussView, Semichem Inc., Shawnee Mission, KS, 2009.[22] L. Tian, F. Chen, Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm, J. Mol. Graphics Modell. 38(9) (2012) 314-323.[23] T. Lu, F. Chen, Multiwfn:A multifunctional wavefunction analyzer, J. Comput. Chem. 33(5) (2012) 580-592.[24] W. Humphrey, A. Dalke, K. Schulten, VMD:Visual molecular dynamics, J. Mol. Graph. 14(1) (1996) 33-38.[25] R.F.W. Bader, Atoms in Molecules:A Quantum Theory, Oxford University Press, New York, 1994.[26] P.C. Harihara, J.A. Pople, Influence of polarization functions on molecular-orbital hydrogenation energies, Theor. Chim. Acta 28(3) (1973) 213-222.[27] B.J. Lynch, Y. Zhao, D.G. Truhlar, Effectiveness of diffuse basis functions for calculating relative energies by density functional theory, J. Phys. Chem. A 107(9) (2003) 1384-1388.[28] C.T. Lee, W.T. Yang, R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density, Phys. Rev. B 37(2) (1988) 785-789.[29] A.D. Becke, Density-functional thermochemistry. 3. The role of exact exchange, J. Chem. Phys. 98(7) (1993) 5648-5652.[30] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, Ab-initio calculation of vibrational absorption and circular-dichroism spectra using density-functional force-fields, J. Phys. Chem. 98(45) (1994) 11623-11627.[31] J. Sirijaraensre, J. Limtrakul, Hydrogenation of CO2 to formic acid over a Cu-embedded graphene:A DFT study, Appl. Surf. Sci. 364(2016) 241-248.[32] M.D. Esrafili, F. Sharifi, L. Dinparast, Catalytic hydrogenation of CO2 over Pt-and Ni-doped graphene:A comparative DFT study, J. Mol. Graphics Modell. 77(2017) 143-152.[33] K. Balamurugan, V. Subramanian, Adsorption of chlorobenzene onto (5,5) armchair single-walled carbon nanotube and graphene sheet:Toxicity versus adsorption strength, J. Phys. Chem. C 117(41) (2013) 21217-21227.[34] J. Ho, A. Klamt, M.L. Coote, Comment on the correct use of continuum solvent models, J. Phys. Chem. A 114(51) (2010) 13442-13444.[35] F. Li, B. Cao, W.X. Zhu, H. Song, K.L. Wang, C.Q. Li, Hydrogenation of phenol over Pt/CNTs:The effects of Pt loading and reaction solvents, Catalysts 7(5) (2017) 145.[36] B. Chan, L. Radom, Base-catalyzed hydrogenation:Rationalizing the effects of catalyst and substrate structures and solvation, J. Am. Chem. Soc. 127(8) (2005) 2443-2454.[37] J.F. Espinal, T.N. Truong, F. Mondragon, Mechanisms of NH3 formation during the reaction of H-2 with nitrogen containing, carbonaceous materials, Carbon 45(11) (2007) 2273-2279.[38] G. Zhong, B. Chan, L. Radom, Hydrogenation of simple aromatic molecules:A computational study of the mechanism, J. Am. Chem. Soc. 129(4) (2007) 924-933. |