[1] N. Wagner, V. Agrawal, An agent-based simulation system for concert venue crowd evacuation modeling in the presence of a fire disaster, Expert Syst. Appl. 41(2014) 2807-2815.[2] Y. Gao, Z. Shang, A. Kokossis, Agent-based intelligent system development for decision support in chemical process industry, Expert Syst. Appl. 36(2009) 11099-11107.[3] C.M. Macal, M.J. North, Tutorial on agent-based modelling and simulation, J. Simul. 4(2010) 151-162.[4] H. Cheng, X. Li, Y. Qian, Integrated modelling of process operation systems using the agent-oriented approach, Can. J. Chem. Eng. 83(2005) 291-299.[5] K.H. van Dam, A. Adhitya, R. Srinivasan, Z. Lukszo, Benchmarking numerical and agent-based models of an oil refinery supply chain, Comput. Aided Chem. Eng. 25(2008) 623-628.[6] R. Paton, R. Gregory, C. Vlachos, J. Saunders, H. Wu, Evolvable social agents for bacterial systems modeling, IEEE Trans. Nanobiosci. 3(2004) 208-216.[7] Y. Mansury, T.S. Deisboeck, Simulating the time series of a selected gene expression profile in an agent-based tumor model, Phys. D 196(2004) 193-204.[8] Y. Wang, H. Yu, R. Xie, K. Zhao, X. Ju, W. Wang, Z. Liu, L. Chu, An easily recoverable thermo-sensitive polyelectrolyte as draw agent for forward osmosis process, Chin. J. Chem. Eng. 24(2016) 86-93.[9] T.-S. Chung, L. Luo, C.F. Wan, Y. Cui, G. Amy, What is next for forward osmosis (FO) and pressure retarded osmosis (PRO), Sep. Purif. Technol. 156(2015) 856-860.[10] A. Altaee, A. Sharif, Pressure retarded osmosis:Advancement in the process applications for power generation and desalination, Desalination 356(2015) 31-46.[11] Q. Yang, K.Y. Wang, T.-S. Chung, A novel dual-layer forward osmosis membrane for protein enrichment and concentration, Sep. Purif. Technol. 69(2009) 269-274.[12] E.M. Garcia-Castello, J.R. McCutcheon, Dewatering press liquor derived from orange production by forward osmosis, J. Membr. Sci. 372(2011) 97-101.[13] J.R. McCutcheon, R.L. McGinnis, M. Elimelech, Desalination by ammonia-carbon dioxide forward osmosis:Influence of draw and feed solution concentrations on process performance, J. Membr. Sci. 278(2006) 114-123.[14] S. Jamil, S. Jeong, S. Vigneswaran, Application of pressure assisted forward osmosis for water purification and reuse of reverse osmosis concentrate from a water reclamation plant, Sep. Purif. Technol. 171(2016) 182-190.[15] D. Zhao, S. Chen, C.X. Guo, Q. Zhao, X. Lu, Multi-functional forward osmosis draw solutes for seawater desalination, Chin. J. Chem. Eng. 24(2016) 23-30.[16] N.-D. Mermier, C. Borges, Direct osmosis process for power generation using salinity gradient:FO/PRO pilot plant investigation using hollow fiber modules, Chem. Eng. Process. Process Intensif. 103(2016) 27-36.[17] K.K. Sirkar, A.G. Fane, R. Wang, S.R. Wickramasinghe, Process intensification with selected membrane processes, Chem. Eng. Process. Process Intensif. 87(2015) 16-25.[18] S. Zhao, L. Zou, C.Y. Tang, D. Mulcahy, Recent developments in forward osmosis:Opportunities and challenges, J. Membr. Sci. 396(2012) 1-21.[19] K. Lutchmiah, A. Verliefde, K. Roest, L.C. Rietveld, E.R. Cornelissen, Forward osmosis for application in wastewater treatment:A review, Water Res. 58(2014) 179-197.[20] T.Y. Cath, A.E. Childress, M. Elimelech, Forward osmosis:Principles, applications, and recent developments, J. Membr. Sci. 281(2006) 70-87.[21] D.H. Jung, J. Lee, Y.G. Lee, M. Park, S. Lee, D.R. Yang, J.H. Kim, Simulation of forward osmosis membrane process:Effect of membrane orientation and flow direction of feed and draw solutions, Desalination 277(2011) 83-91.[22] S. Phuntsho, S. Vigneswaran, J. Kandasamy, S. Hong, S. Lee, H.K. Shon, Influence of temperature and temperature difference in the performance of forward osmosis desalination process, J. Membr. Sci. 415(2012) 734-744.[23] S. Phuntsho, S. Hong, M. Elimelech, H.K. Shon, Osmotic equilibrium in the forward osmosis process:Modelling, experiments and implications for process performance, J. Membr. Sci. 453(2014) 240-252.[24] S. Zhao, L. Zou, D. Mulcahy, Effects of membrane orientation on process performance in forward osmosis applications, J. Membr. Sci. 382(2011) 308-315.[25] C.Y. Tang, Q. She, W.C. Lay, R. Wang, A.G. Fane, Coupled effects of internal concentration polarization and fouling on flux behavior of forward osmosis membranes during humic acid filtration, J. Membr. Sci. 354(2010) 123-133.[26] W. Li, Y. Gao, C.Y. Tang, Network modeling for studying the effect of support structure on internal concentration polarization during forward osmosis:model development and theoretical analysis with FEM, J. Membr. Sci. 379(2011) 307-321.[27] S. Zhao, L. Zou, Relating solution physicochemical properties to internal concentration polarization in forward osmosis, J. Membr. Sci. 379(2011) 459-467.[28] M. Taherian, S.M. Mousavi, Modeling and simulation of forward osmosis process using agent-based model system, Comput. Chem. Eng. 100(2017) 104-118.[29] G.T. Gray, J.R. McCutcheon, M. Elimelech, Internal concentration polarization in forward osmosis:Role of membrane orientation, Desalination 197(2006) 1-8.[30] S.F. Railsback, S.L. Lytinen, S.K. Jackson, Agent-based simulation platforms:Review and development recommendations, Simulation 82(2006) 609-623.[31] A. Achilli, T.Y. Cath, A.E. Childress, Power generation with pressure retarded osmosis:An experimental and theoretical investigation, J. Membr. Sci. 343(2009) 42-52.[32] B. Chanukya, S. Patil, N.K. Rastogi, Influence of concentration polarization on flux behavior in forward osmosis during desalination using ammonium bicarbonate, Desalination 312(2013) 39-44.[33] J.R. McCutcheon, M. Elimelech, Influence of concentrative and dilutive internal concentration polarization on flux behavior in forward osmosis, J. Membr. Sci. 284(2006) 237-247.[34] A. Sagiv, A. Zhu, P.D. Christofides, Y. Cohen, R. Semiat, Analysis of forward osmosis desalination via two-dimensional FEM model, J. Membr. Sci. 464(2014) 161-172.[35] V.t. Geraldes, V. Semiao, M.N. de Pinho, Flow and mass transfer modelling of nanofiltration, J. Membr. Sci. 191(2001) 109-128.[36] M. Laliberte, Model for calculating the viscosity of aqueous solutions, J. Chem. Eng. Data 52(2007) 321-335.[37] A.V. Bui, M. Nguyen, Prediction of viscosity of glucose and calcium chloride solutions, J. Food Eng. 62(2004) 345-349.[38] OLI Stream Analyzer 3.2, OLI Systems Inc. Morris Plains, NJ, US, 2011, http://www.olisystems.com/.[39] M. Castaldi, G. D'Errico, L. Paduano, V. Vitagliano, Transport properties of the binary system glucose-water at 25℃. A velocity correlation study, J. Chem. Eng. Data 43(1998) 653-657.[40] J.A. Rard, D.G. Miller, The mutual diffusion coefficients of Na2SO4-H2O and MgSO4-H2O at 25℃ from Rayleigh interferometry, J. Solut. Chem. 8(1979) 755-766.[41] D.G. Miller, J.A. Rard, L.B. Eppstein, J.G. Albright, Mutual diffusion coefficients and ionic transport coefficients lij of magnesium chloride-water at 25℃, J. Phys. Chem. 88(1984) 5739-5748.[42] J.A. Rard, D.G. Miller, The mutual diffusion coefficients of NaCl-H2O and CaCl2-H2O at 25℃ from Rayleigh interferometry, J. Solut. Chem. 8(1979) 701-716.[43] U. Wilensky, Netlogo (And Netlogo User Manual), Center for Connected Learning and Computer-Based Modeling, Northwestern University, 1999, http://ccl.northwestern.edu/netlogo/.[44] M. Barbati, G. Bruno, A. Genovese, Applications of agent-based models for optimization problems:A literature review, Expert Syst. Appl. 39(2012) 6020-6028.[45] S. Benavides, A.S. Oloriz, W.A. Phillip, Forward osmosis processes in the limit of osmotic equilibrium, Ind. Eng. Chem. Res. 54(2014) 480-490.[46] N.T. Hancock, T.Y. Cath, Solute coupled diffusion in osmotically driven membrane processes, Environ. Sci. Technol. 43(2009) 6769-6775.[47] C. Suh, S. Lee, Modeling reverse draw solute flux in forward osmosis with external concentration polarization in both sides of the draw and feed solution, J. Membr. Sci. 427(2013) 365-374.[48] S.-M. Shim, W.-S. Kim, A numerical study on the performance prediction of forward osmosis process, J. Mech. Sci. Technol. 27(2013) 1179-1189.[49] M. Ghanbari, D. Emadzadeh, W. Lau, H. Riazi, D. Almasi, A. Ismail, Minimizing structural parameter of thin film composite forward osmosis membranes using polysulfone/halloysite nanotubes as membrane substrates, Desalination 377(2016) 152-162. |