[1] E. Barea, C. Montoro, J.A. Navarro, Toxic gas removal-Metal-organic frameworks for the capture and degradation of toxic gases and vapours, Chem. Soc. Rev. 43(2014) 5419-5430.[2] I. Matito-Martos, A. Martin-Calvo, J.J. Gutierrez-Sevillano, M. Haranczyk, M. Doblare, J.B. Parra, C.O. Ania, S. Calero, Zeolite screening for the separation of gas mixtures containing SO2, CO2 and CO, Phys. Chem. Chem. Phys. 16(2014) 19884-19893.[3] V.L. Feigin, G.A. Roth, M. Naghavi, P. Parmar, R. Krishnamurthi, S. Chugh, G.A. Mensah, B. Norrving, I. Shiue, M. Ng, K. Estep, K. Cercy, C.J.L. Murray, M.H. Forouzanfar, Global burden of stroke and risk factors in 188 countries, during 1990-2013:A systematic analysis for the Global Burden of Disease Study 2013, Lancet Neurol. 15(2016) 913-924.[4] B. Pawelec, R.M. Navarro, J.M. Campos-Martin, J.L.G. Fierro, Retracted article:towards near zero-sulfur liquid fuels:A perspective review, Catal. Sci. Technol. 1(2011) 23-42.[5] R.N. Colvile, E.J. Hutchinson, J.S. Mindell, R.F. Warren, The transport sector as a source of air pollution, Atmos. Environ. 35(2001) 1537-1565.[6] P.Z. Moghadam, D. Fairen-Jimenez, R.Q. Snurr, Efficient identification of hydrophobic MOFs:Application in the capture of toxic industrial chemicals, J. Mater. Chem. A 4(2016) 529-536.[7] S.V. Gollakota, C.D. Chriswell, Study of an adsorption process using silicalite for sulfur dioxide removal from combustion gases, Ind. Eng. Chem. Res. 27(1988) 139-143.[8] D. Britt, D. Tranchemontagne, O.M. Yaghi, Metal-organic frameworks with high capacity and selectivity for harmful gases, Proc. Natl. Acad. Sci. U. S. A. 105(2008) 11623-11627.[9] K.C. Kim, P.Z. Moghadam, D. Fairen-Jimenez, R.Q. Snurr, Computational screening of metal catecholates for ammonia capture in metal-organic frameworks, Ind. Eng. Chem. Res. 54(2015) 3257-3267.[10] G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell, C.J. Karwacki, Ammonia vapor removal by Cu3(BTC)2 and its characterization by MAS NMR, J. Phys. Chem. C 113(2009) 13906-13917.[11] C. Petit, T.J. Bandosz, Enhanced adsorption of ammonia on metal-organic framework/graphite oxide composites:Analysis of surface interactions, Adv. Funct. Mater. 20(2010) 111-118.[12] C. Petit, C. Karwacki, G. Peterson, T.J. Bandosz, Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides, J. Phys. Chem. C 111(2007) 12705-12714.[13] J.J. Gutierrez-Sevillano, A. Martin-Calvo, D. Dubbeldam, S. Calero, S. Hamad, Adsorption of hydrogen sulphide on metal-organic frameworks, RSC Adv. 3(2013) 14737-14749.[14] M. Ozekmekci, G. Salkic, M.F. Fellah, Use of zeolites for the removal of H2S:A minireview, Fuel Process. Technol. 139(2015) 49-60.[15] X. Peng, D. Cao, Computational screening of porous carbons, zeolites, and metal organic frameworks for desulfurization and decarburization of biogas, natural gas, and flue gas, AICHE J. 59(2013) 2928-2942.[16] M.S. Shah, M. Tsapatsis, J.I. Siepmann, Monte Carlo simulations probing the adsorptive separation of hydrogen sulfide/methane mixtures using all-silica zeolites, Langmuir 31(2015) 12268-12278.[17] W. Sun, L.-C. Lin, X. Peng, B. Smit, Computational screening of porous metal-organic frameworks and zeolites for the removal of SO2 and NOx from flue gases, AICHE J. 60(2014) 2314-2323.[18] R.S. Pillai, G. Sethia, R.V. Jasra, Sorption of CO, CH4, and N2 in alkali metal ion exchanged zeolite-X:Grand canonical Monte Carlo simulation and volumetric measurements, Ind. Eng. Chem. Res. 49(2010) 5816-5825.[19] J. Weitkamp, M. Fritz, S. Ernst, Zeolites as media for hydrogen storage, Int. J. Hydrog. Energy 20(1995) 967-970.[20] H. Verweij, Y. Lin, J. Dong, Microporous silica and zeolite membranes for hydrogen purification, MRS Bull. 31(2006) 756-764.[21] T. Tomita, K. Nakayama, H. Sakai, Gas separation characteristics of DDR type zeolite membrane, Microporous Mesoporous Mater. 68(2004) 71-75.[22] J. Kim, L.-C. Lin, R.L. Martin, J.A. Swisher, M. Haranczyk, B. Smit, Large-scale computational screening of zeolites for ethane/ethene separation, Langmuir 28(2012) 11914-11919.[23] Y. Liu, F. Guo, J. Hu, S. Zhao, H. Liu, Y. Hu, Screening of desulfurization adsorbent in metal-organic frameworks:A classical density functional approach, Chem. Eng. Sci. 137(2015) 170-177.[24] Y. Liu, S. Zhao, H. Liu, Y. Hu, High-throughput and comprehensive prediction of H2 adsorption in metal-organic frameworks under various conditions, AICHE J. 61(2015) 2951-2957.[25] E. Garcia-Perez, J.B. Parra, C.O. Ania, A. Garcia-Sanchez, J.M. van Baten, R. Krishna, D. Dubbeldam, S. Calero, A computational study of CO2, N2, and CH4 adsorption in zeolites, Adsorption 13(2007) 469-476.[26] F. Wang, W. Wang, S. Huang, J. Teng, Z. Xie, Experiment and modeling of pure and binary adsorption of n-butane and Butene-1 on ZSM-5 zeolites with different Si/Al ratios, Chin. J. Chem. Eng. 15(2007) 376-386.[27] Z. Zhang, H. Liu, J. Zhu, B. Chen, H. Tian, Z. He, Molecular simulations of adsorption and diffusion behaviors of benzene molecules in NaY zeolite, Chin. J. Chem. Eng. 17(2009) 618-624.[28] M. Iwamoto, H. Yahiro, K. Tanda, N. Mizuno, Y. Mine, S. Kagawa, Removal of nitrogen monoxide through a novel catalytic process. 1. Decomposition on excessively copper-ion-exchanged ZSM-5 zeolites, J. Phys. Chem. 95(1991) 3727-3730.[29] H. Maghsoudi, M. Soltanieh, H. Bozorgzadeh, A. Mohamadalizadeh, Adsorption isotherms and ideal selectivities of hydrogen sulfide and carbon dioxide over methane for the Si-CHA zeolite:comparison of carbon dioxide and methane adsorption with the all-silica DD3R zeolite, Adsorption 19(2013) 1045-1053.[30] C. Baerlocher, L. McCusker, Database of zeolite structures, Structure Commission of the International Zeolite Association, http://www.iza-structure.org/databases 2013.[31] T.F. Willems, C.H. Rycroft, M. Kazi, J.C. Meza, M. Haranczyk, Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials, Microporous Mesoporous Mater. 149(2012) 134-141.[32] M. Calligaris, G. Nardin, L. Randaccio, Cation site location in hydrated chabazites. Crystal structure of potassium- and silver-exchanged chabazites, Zeolites 3(1983) 205-208.[33] C.A. Fyfe, H. Gies, G.T. Kokotailo, C. Pasztor, H. Strobl, D.E. Cox, Detailed investigation of the lattice structure of zeolite ZSM-11 by a combination of solid-state NMR and synchrotron X-ray diffraction techniques, J. Am. Chem. Soc. 111(1989) 2470-2474.[34] J.B. Nicholas, A.J. Hopfinger, F.R. Trouw, L.E. Iton, Molecular modeling of zeolite structure. 2. Structure and dynamics of silica sodalite and silicate force field, J. Am. Chem. Soc. 113(1991) 4792-4800.[35] R.E. Morris, S.J. Weigel, N.J. Henson, L.M. Bull, M.T. Janicke, B.F. Chmelka, A.K. Cheetham, A synchrotron X-ray diffraction, neutron diffraction, 29Si MAS-NMR, and computational study of the siliceous form of zeolite Ferrierite, J. Am. Chem. Soc. 116(1994) 11849-11855.[36] B. Smit, Simulating the adsorption isotherms of methane, ethane, and propane in the zeolite Silicalite, J. Phys. Chem. 99(1995) 5597-5603.[37] F. Sokolic, Y. Guissani, B. Guillot, Molecular dynamics simulations of thermodynamic and structural properties of liquid SO2, Mol. Phys. 56(1985) 239-253.[38] B. Eckl, J. Vrabec, H. Hasse, An optimised molecular model for ammonia, Mol. Phys. 106(2008) 1039-1046.[39] E. Bourasseau, V. Lachet, N. Desbiens, J.-B. Maillet, J.-M. Teuler, P. Ungerer, Thermodynamic behavior of the CO2+ NO2/N2O4 mixture:A Monte Carlo simulation study, J. Phys. Chem. B 112(2008) 15783-15792.[40] Z. Zhou, B.D. Todd, K.P. Travis, R.J. Sadus, A molecular dynamics study of nitric oxide in water:diffusion and structure, J. Chem. Phys. 123(2005), 054505.[41] A. Sirjoosingh, S. Alavi, T.K. Woo, Grand-canonical Monte Carlo and molecular-dynamics simulations of carbon-dioxide and carbon-monoxide adsorption in zeolitic imidazolate framework materials, J. Phys. Chem. C 114(2010) 2171-2178.[42] S. Chempath, R.Q. Snurr, J.J. Low, Molecular modeling of binary liquid-phase adsorption of aromatics in silicalite, AICHE J. 50(2004) 463-469.[43] T. Duren, L. Sarkisov, O.M. Yaghi, R.Q. Snurr, Design of new materials for methane storage, Langmuir 20(2004) 2683-2689.[44] T. Duren, R.Q. Snurr, Assessment of isoreticular metal-organic frameworks for adsorption separations:A molecular simulation study of methane/n-butane mixtures, J. Phys. Chem. B 108(2004) 15703-15708.[45] S. Chempath, J.F.M. Denayer, K.M.A. De Meyer, G.V. Baron, R.Q. Snurr, Adsorption of liquid-phase alkane mixtures in silicalite:Simulations and experiment, Langmuir 20(2004) 150-156.[46] L. Yang, C. Peng, H. Liu, Y. Hu, S.I. Sandler, Predicting adsorption of nperfluorohexane in BCR-704 by molecular simulation, Fluid Phase Equilib. 366(2014) 165-170. |