[1] U.H.F. Bunz, Y. Rubin, Y. Tobe, Polyethynylated cyclic pi-systems:scaffoldings for novel two and three-dimensional carbon networks, Chem. Soc. Rev. 28(1999) 107-119.[2] F. Diederich, Carbon scaffolding-building acetylenic all-carbon and carbon-rich compounds, Nature 369(1994) 199-207.[3] H.H. Wu, Q.H. Gong, D.H. Olson, J. Li, Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks, Chem. Rev. 112(2012) 836-868.[4] Y.J. Li, L. Xu, H.B. Liu, Y.L. Li, Graphdiyne and graphyne:from theoretical predictions to practical construction, Chem. Soc. Rev. 43(2014) 2572-2586.[5] A.L. Ivanovskii, Graphynes and graphdyines, Prog. Solid State Chem. 41(2013) 1-19.[6] E.L. Spitler, C.A. Johnson, M.M. Haley, Renaissance of annulene chemistry, Chem. Rev. 106(2016) 5344-5386.[7] M.M. Haley, S.C. Brand, J.J. Pak, Carbon networks based on dehydrobenzoannulenes:synthesis of graphdiyne substructures, Angew. Chem. Int. Ed. Engl. 36(1997) 836-838.[8] B. Cirera, Y.Q. Zhang, J. Bjork, S. Klyatskaya, Z. Chen, M. Ruben, J.V. Barth, F. Klappenberger, Synthesis of extended graphdiyne wires by vicinal surface templating, Nano Lett. 14(2014) 1891-1897.[9] M. Gholami, F. Melin, R. McDonald, M.J. Ferguson, L. Echegoyen, R.R. Tykwinski, Synthesis and characterization of expanded radialenes, bisradialenes, and radiaannulenes, Angew. Chem. Int. Ed. Engl. 46(2007) 9081-9085.[10] Q.H. Yuan, F. Ding, Formation of carbyne and graphyne on transition metal surfaces, Nanoscale 6(2014) 12727-12731.[11] G.X. Li, Y.L. Li, H.B. Liu, Y.B. Guo, Y. Li, D. Zhu, Architecture of graphdiyne nanoscale films, Chem. Commun. 46(2010) 3256-3258.[12] C.Y. Kuang, G. Tang, T.G. Jiu, H. Yang, H.B. Liu, B.R. Li, W.N. Luo, X.D. Li, W.J. Zhang, F.S. Lu, J.F. Fang, Y.L. Li, Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells, Nano Lett. 15(2015) 2756-2762.[13] N.L. Yang, Y.Y. Liu, H. Wen, Z.Y. Tang, H.J. Zhao, Y.L. Li, D. Wang, Photocatalytic properties of graphdiyne and graphene modified TiO2:from theory to experiment, ACS Nano 7(2013) 1504-1512.[14] H.J. Tang, C.M. Hessel, J.Y. Wang, N.L. Yang, R.Y. Yu, H.J. Zhao, D. Wang, Twodimensional carbon leading to new photoconversion processes, Chem. Soc. Rev. 43(2014) 4281-4299.[15] Y.H. Guo, K. Jiang, B. Xu, Y.D. Xia, J. Yin, Z.G. Liu, Remarkable hydrogen storage capacity in Li-decorated graphyne:theoretical predication, J. Phys. Chem. C 116(2012) 13837-13841.[16] H.J. Hwang, Y. Kwon, H. Lee, Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium, J. Phys. Chem. C 116(2012) 20220-20224.[17] C.S. Huang, S.L. Zhang, H.B. Liu, Y.J. Li, G.T. Cui, Y.L. Li, Graphdiyne for high capacity and long-life lithium storage, Nano Energy 11(2015) 481-489.[18] S.L. Zhang, H.B. Liu, C.S. Huang, G. Cui, Y.L. Li, Bulk graphdiyne powder applied for highly efficient lithium storage, Chem. Commun. 51(2015) 1834-1837.[19] Y. Jiao, A.J. Du, S.C. Smith, Z.H. Zhu, S.Z. Qiao, H-2 purification by functionalized graphdiyne-role of nitrogen doping, J. Mater. Chem. A 3(2015) 6767-6771.[20] Y. Jiao, A.J. Du, M. Hankel, Z.H. Zhu, V. Rudolph, S.C. Smith, Graphdiyne:a versatile nanomaterial for electronics and hydrogen purification, Chem. Commun. 47(2011) 11843-11845.[21] S.W. Cranford, M.J. Buehler, Selective hydrogen purification through graphdiyne under ambient temperature and pressure, Nanoscale 4(2012) 4587-4593.[22] H.Y. Zhang, X.J. He, M.Z. Zhao, M. Zhang, L.X. Zhao, X.J. Feng, Y.H. Luo, Tunable hydrogen separation in sp-sp2 hybridized carbon membranes:a first-principles prediction, J. Phys. Chem. C 116(2012) 16634-16638.[23] S.C. Lin, M.J. Buehler, Mechanics and molecular filtration performance of graphyne nanoweb membranes for selective water purification, Nanoscale 5(2013) 11801-11807.[24] M.M. Xue, H. Qiu, W.L. Guo, Exceptionally fast water desalination at complete salt rejection by pristine graphyne monolayers, Nanotechnology 24(2013), 505720.[25] C.Q. Zhu, H. Li, X.C. Zeng, E.G. Wang, S. Meng, Quantized water transport:ideal desalination through graphyne-4 membrane, Sci. Rep. 3(2013) 3163.[26] J.L. Kou, X.Y. Zhou, H.J. Lu, F.M. Wu, J.T. Fan, Graphyne as the membrane for water desalination, Nanoscale 6(2014) 1865-1870.[27] F. Liu, J. Yang, Z.J. Xu, X.N. Yang, Selective surface adsorption and pore trapping for ethanol-water mixtures near single-layer polyporous graphynes, Appl. Surf. Sci. 387(2016) 1080-1087.[28] A. Nalaparaju, X.S. Zhao, J.W. Jiang, Biofuel purification by pervaporation and vapor permeation in metal-organic frameworks:a computational study, Energy Environ. Sci. 4(2011) 2107-2116.[29] H.J. Huang, S. Ramaswamy, U.W. Tschirner, B.V. Ramarao, A review of separation technologies in current and future biorefineries, Sep. Purif. Technol. 62(2008) 1-21.[30] G.P. Liu, W. Wei, W.Q. Jin, N.P. Xu, Polymer/ceramic composite membranes and their application in pervaporation process, Chin. J. Chem. Eng. 20(2012) 62-70.[31] Y. Jiao, A.J. Du, M. Hankel, S.C. Smith, Modelling carbon membranes for gas and isotope separation, Phys. Chem. Chem. Phys. 15(2013) 4832-4843.[32] M. Thomas, B. Corry, T.A. Hilder, What have we learnt about the mechanisms of rapid water transport, ion rejection and selectivity in nanopores from molecular simulation? Small 10(2014) 1453-1465.[33] S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics, J. Comput. Phys. 117(1995) 1-19.[34] H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, The missing term in effective pair potentials, J. Phys. Chem. 91(1987) 6269-6271.[35] M. Lundgren, N.L. Allan, T. Cosgrove, Wetting of water and water/ethanol droplets on a non-polar surface:a molecular dynamics study, Langmuir 18(2002) 10462-10466.[36] J.T. Fern, D.J. Keffer, W.V. Steele, Vapor-liquid equilibrium of ethanol by molecular dynamics simulation and Voronoi tessellation, J. Phys. Chem. B 111(2007) 13278-13286.[37] A.K. Metya, S. Khan, J.K. Singh, Wetting transition of the ethanol-water droplet on smooth and textured surfaces, J. Phys. Chem. C 118(2014) 4113-4121.[38] N. Wei, X.S. Peng, Z.Q. Xu, Understanding water permeation in graphene oxide membranes, ACS Appl. Mater. Interfaces 6(2014) 5877-5883.[39] M.D. Ma, L.M. Shen, J. Sheridan, J.Z. Liu, C. Chen, Q.S. Zheng, Friction of water slipping in carbon nanotubes, Phys. Rev. E 83(2011), 036316.[40] M.E. Suk, N.R. Aluru, Molecular and continuum hydrodynamics in graphene nanopores, RSC Adv. 3(2013) 9365-9372.[41] M.E. Suk, N.R. Aluru, Ion transport in sub-5-nm graphene nanopores, J. Chem. Phys. 140(2014), 084707.[42] M. Mijakovic, K.D. Polok, B. Kezic, F. Sokolic, A. Perera, L. Zoranic, A comparison of force fields for ethanol-water mixtures, Mol. Simul. 41(2015) 699-712.[43] M. Mijakovic, B. Kezic, L. Zoranic, F. Sokolic, A. Asenbaum, C. Pruner, E. Wilhelm, Ethanol-water mixtures:ultrasonics, Brillouin scattering and molecular dynamics, J. Mol. Liq. 164(2011) 66-73.[44] Z.Q. Hu, Y.F. Chen, J.W. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination:insight from molecular simulation, J. Chem. Phys. 134(2011), 134705.[45] N. Narita, S. Nagai, S. Suzuki, K. Nakao, Optimized geometries and electronic structures of graphyne and its family, Phys. Rev. B 58(1998) 11009-11014.[46] G. Hummer, J.C. Rasaiah, J.P. Noworyta, Water conduction through the hydrophobic channel of a carbon nanotube, Nature 414(2001) 188-190.[47] J.L. Kou, X.Y. Zhou, Y.Y. Chen, H.J. Lu, F.M. Wu, J.T. Fan, Water permeation through single-layer graphyne membrane, J. Chem. Phys. 139(2013), 064705.[48] X.P. Ren, C.L. Wang, B. Zhou, H.P. Fang, J. Hu, R.H. Zhou, Ethanol promotes dewetting transition at low concentrations, Soft Matter 9(2013) 4655-4660.[49] X.P. Ren, B. Zhou, C. Wang, Water-induced ethanol dewetting transition, J. Chem. Phys. 137(2012), 024703.[50] M. Shahbabaei, D. Kim, Transport of water molecules through noncylindrical pores in multilayer nanoporous graphene, Phys. Chem. Chem. Phys. 19(2017) 20749-20759.[51] D. Cohen-Tanugi, J.C. Grossman, Water desalination across nanoporous graphene, Nano Lett. 12(2012) 3602-3608.[52] C.Q. Zhu, H. Li, S. Meng, Transport behavior of water molecules through twodimensional nanopores, J. Chem. Phys. 141(2014), 18C528.[53] A. Nicolai, B.G. Sumpter, V. Meunier, Tunable water desalination across graphene oxide framework membranes, Phys. Chem. Chem. Phys. 16(2014) 8646-8654.[54] D. Cohen-Tanugi, J.C. Grossman, Water permeability of nanoporous graphene at realistic pressures for reverse osmosis desalination, J. Chem. Phys. 141(2014), 074704.[55] Z.Q. Hu, Y.F. Chen, J.W. Jiang, Zeolitic imidazolate framework-8 as a reverse osmosis membrane for water desalination:insight from molecular simulation, J. Chem. Phys. 134(2011), 134705.[56] X.P. Yang, X.N. Yang, S.Y. Liu, Molecular dynamics simulation of water transport through graphene-based nanopores:flow behavior and structure characteristics, Chin. J. Chem. Eng. 23(2015) 1587-1592.[57] M.E. Suk, N.R. Aluru, Water transport through ultrathin graphene, J. Phys. Chem. Lett. 1(2010) 1590-1594.[58] N. Severin, I.M. Sokolov, J.P. Rabe, Dynamics of ethanol and water mixtures observed in a self-adjusting molecularly thin slit pore, Langmuir 30(2014) 3455-3459.[59] M.Y. Zhao, X.N. Yang, Segregation structures and miscellaneous diffusions for ethanol/water mixtures in graphene-based nanoscale pores, J. Phys. Chem. C 119(2015) 21664-21673.[60] S. Joseph, N.R. Aluru, Why are carbon nanotubes fast transporters of water? Nano Lett. 8(2008) 452-458.[61] H.L. Du, J.Y. Li, J. Zhang, G. Su, X.Y. Li, Y.L. Zhao, Separation of hydrogen and nitrogen gases with porous graphene membrane, J. Phys. Chem. C 115(2011) 23261-23266.[62] Y.D. Zhao, Y.Z. Xie, Z.K. Liu, X.S. Wang, Y. Chai, F. Yan, Two-dimensional material membranes:an emerging platform for controllable mass transport applications, Small 10(2014) 4521-4542.[63] C.Z. Sun, M.S.H. Boutilier, H. Au, P. Poesio, B.F. Bai, R. Karnik, N.G. Hadjiconstantinou, Mechanisms of molecular permeation through nanoporous graphene membranes, Langmuir 30(2014) 675-682.[64] K. Nieszporek, M. Drach, Alkane separation using nanoporous graphene membranes, Phys. Chem. Chem. Phys. 17(2015) 1018-1024.[65] P. Peng, B.L. Shi, Y.Q. Lan, A review of membrane materials for ethanol recovery by pervaporation, Sep. Sci. Technol. 46(2011) 234-246.[66] K.S. Chang, Y.C. Chung, T.H. Yang, S.J. Lue, K.L. Tung, Y.F. Lin, Free volume and alcohol transport properties of PDMS membranes:insights of nano-structure and interfacial affinity from molecular modeling, J. Membr. Sci. 417(2012) 119-130.[67] S. Claes, P. Vandezande, S. Mullens, K. De Sitter, R. Peeters, M.K. Van Bael, Preparation and benchmarking of thin film supported PTMSP-silica pervaporation membranes, J. Membr. Sci. 389(2012) 265-271. |