[1] F. Bentiss, M. Traisnel, M. Lagrenee, The substituted 1,3,4-oxadiazoles:A new class of corrosion inhibitors of mild steel in acidic media, Corros. Sci. 42(2000) 127-146.[2] M. Finsgar, J. Jackson, Application of corrosion inhibitors for steels in acidic media for the oil and gas industry, Corros. Sci. 86(2014) 17-41.[3] A. Dutta, S.Kr. Saha, U. Adhikari, P. Banerjee, D. Sukul, Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution:A combined experimental and theoretical approach, Corros. Sci. 123(2017) 256-266.[4] S. Kertit, B. Hammouti, Corrosion inhibition of iron 1 mol·L-1 HCl by 1-phenyl-5-mercapto-1,2,3,4-tetrazole, Appl. Surf. Sci. 93(1996) 59-66.[5] E. Bensajjay, S. Alehyen, M. El Achouri, S. Kertit, Corrosion inhibition of steel by 1-phenyl-5-mercapto 1,2,3,4-tetrazole in acidic environments (0.5 M H2SO4 and 1/3 M H3PO4), Anti-Corros. Methods Mater. 50(2003) 402-409.[6] P. Morales-Gil, G. Negron-Silva, M. Romero-Romoa, C. Angeles-Chavez, M. PalomarPardave, Corrosion inhibition of pipeline steel grade API 5L X52 immersed in 1 M H2SO4 aqueous solution using heterocyclic organic molecules, Electrochim. Acta 49(2004) 4733-4741.[7] X.H. Li, S.D. Deng, H. Fu, Corrosion inhibition of red tetrazolium for cold rolled steel in hydrochloric acid media, Chin. J. Appl. Chem. 26(2009) 1075-1079(in Chinese).[8] X.H. Li, S.D. Deng, H. Fu, Synergism between red tetrazolium and uracil on the corrosion of cold rolled steel in H2SO4 solution, Corros. Sci. 51(2009) 1344-1355.[9] X.H. Li, S.D. Deng, H. Fu, Synergistic inhibition effect of red tetrazolium and uracil on the corrosion of cold rolled steel in H3PO4 solution:Weight loss, electrochemical, and AFM approaches, Mater. Chem. Phys. 115(2009) 815-824.[10] X.H. Li, S.D. Deng, H. Fu, Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in hydrochloric acid solution, Corros. Sci. 52(2010) 2786-2792.[11] X.H. Li, S.D. Deng, H. Fu, Blue tetrazolium as a novel corrosion inhibitor for cold rolled steel in sulfuric acid solution, Mater. Chem. Phys. 129(2011) 696-700.[12] S.D. Deng, X.H. Li, H. Fu, Nitrotetrazolium blue chloride as a novel corrosion inhibitor of steel in sulfuric acid solution, Corros. Sci. 52(2010) 3840-3846.[13] X.H. Li, S.D. Deng, H. Fu, Inhibition effect of nitrotetrazolium blue chloride on the corrosion of steel in hydrochloric acid solutions, Acta Phys.-Chim. Sin. 53(2011) 302-309.[14] X.H. Li, S.D. Deng, H. Fu, Triazolyl blue tetrazolium bromide as a novel corrosion inhibitor for steel in HCl and H2SO4 solutions, Corros. Sci. 53(2011) 302-309.[15] Z. Panossian, N.L. de Almeida, R.M.F. de Sousa, G.de S. Pimenta, L.B.S. Marques, Corrosion of carbon steel pipes and tanks by concentrated sulfuric acid:A review, Corros. Sci. 58(2012) 1-11.[16] X. Wang, Y. Gao, K. Li, J. Yang, Y. Li, J. Feng, Effect of yttrium on the corrosion behaviour of 09CrCuSb alloy in concentrated sulphuric acid, Corros. Sci. 69(2013) 369-375.[17] M.A. Amin, M.M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative, Corros. Sci. 53(2011) 873-885.[18] S.S. Abdel Rehim, O.A. Hazzazi, M.A. Amin, K.F. Khaled, On the corrosion inhibition of low carbon steel in concentrated sulphuric acid solutions. Part I:Chemical and electrochemical (AC and DC) studies, Corros. Sci. 50(2008) 2258-2271.[19] Materials Studio 4.0., Accelrys Inc., San Diego, CA, 2005.[20] X.H. Li, X.G. Xie, S.D. Deng, G.B. Du, Two phenylpyrimidine derivatives as new corrosion inhibitors for cold rolled steel in hydrochloric acid solution, Corros. Sci. 87(2014) 27-39.[21] X.H. Li, X.G. Xie, S.D. Deng, G.B. Du, Inhibition effect of two mercaptopyrimidine derivatives on cold rolled steel in HCl solution, Corros. Sci. 92(2015) 136-147.[22] J. Radilla, G.E. Negron-Silva, M. Palomar-Pardave, M. Romero-Romo, M. Galvan, DFT study of the adsorption of the corrosion inhibitor2-mercaptoimidazole onto Fe(100) surface, Electrochim. Acta 112(2013) 577-586.[23] D. Wang, L. Gao, D. Zhang, D. Yang, H. Wang, T. Lin, Experimental and theoretical investigation on corrosion inhibition of AA5052 aluminium alloy by L-cysteine in alkaline solution, Mater. Chem. Phys. 169(2016) 142-151.[24] N. Kovacevic, I. Milosev, A. Kokalj, How relevant is the adsorption bonding of imidazoles and triazoles for their corrosion inhibition of copper? Corros. Sci. 124(2017) 25-34.[25] X.H. Li, S.D. Deng, H. Fu, T.H. Li, Adsorption and inhibition effect of 6-benzylaminopurine on cold rolled steel in 1.0 mol·L-1 HCl, Electrochim. Acta 54(2009) 4089-4098.[26] Z. Salarvand, M. Amirnasr, M. Talebian, K. Raeissi, S. Meghdadi, Enhanced corrosion resistance of mild steel in 1 mol·L-1 HCl solution by trace amount of 2-phenylbenzothiazole derivatives:Experimental, quantum chemical calculations and molecular dynamics (MD)simulation studies, Corros. Sci. 114(2017) 133-145.[27] R. Fuchs-Godec, V. Dolecek, A effect of sodium dodecylsulfate on the corrosion of copper in sulphuric acid media, Colloids Surf. A Physicochem. Eng. Asp. 244(2004) 73-76.[28] M.V. Fiori-Bimbi, P.E. Alvarez, H. Vaca, C.A. Gervasi, Corrosion inhibition of mild steel in HCL solution by pectin, Corros. Sci. 92(2015) 192-199.[29] A.P. Hanza, R. Naderi, E. Kowsari, M. Sayebani, Corrosion behavior of mild steel in H2SO4 solution with 1,4-di[1-methylene-3-methyl imidazolium bromide]-benzene as an ionic liquid, Corros. Sci. 107(2016) 96-106.[30] J. Banas, B. Mazurkiewicz, B. Stypula, Passivity of metals in concentrated and anhydrous solutions of sulphuric acid, Electrochim. Acta 37(1992) 1069-1073.[31] J.R. Kish, M.B. Ives, J.R. Rodda, Anodic behaviour of stainless steel S43000 in concentrated solutions of sulphuric acid, Corros. Sci. 45(2003) 1571-1594.[32] M.A. Amin, K.F. Khaled, S.A. Fadl-Allah, Testing validity of the Tafel extrapolation method for monitoring corrosion of cold rolled steel in HCl solutions-Experimental and theoretical studies, Corros. Sci. 52(2010) 140-151.[33] Z.A. Abdallah, M.S.M. Ahmed, M.M. Saleh, Organic synthesis and inhibition action of novel hydrazide derivative for mild steel corrosion in acid solutions, Mater. Chem. Phys. 174(2016) 91-99.[34] B.P. Markhali, R. Naderi, M. Mahdavian, M. Sayebani, S.Y. Arman, Electrochemical impedance spectroscopy and electrochemical noise measurements as tools to evaluate corrosion inhibition of azole compounds on stainless steel in acidic media, Corros. Sci. 75(2013) 269-279.[35] P. Mourya, P. Singh, A.K. Tewari, R.B. Rastogi, M.M. Singh, Relationship between structure and inhibition behavior of quinolinium salts for mild steel corrosion:Experimental and theoretical approach, Corros. Sci. 95(2015) 71-87.[36] Q.B. Zhang, Y.X. Hua, Corrosion inhibition of aluminum in hydrocloric acid solution by alkylimidazoliium ionic liquids, Mater. Chem. Phys. 119(2010) 57-64.[37] R. Solmaz, Investigation of adsorption and corrosion inhibition of mild steel in hydrochloric acid solution by 5-(4-dimethylaminobenzylidene)rhodanine, Corros. Sci. 79(2014) 169-176.[38] Z. Yang, F. Zhan, Y. Pan, Z. LYu, C. Han, Y.P. Hu, P. Ding, T. Gao, X. Zhou, Y. Jiang, Structure of a novel benzyl quinolinium chloride derivative and its effective corrosion inhibition in 15 wt.% hydrochloric acid, Corros. Sci. 99(2015) 281-294.[39] A. Doner, G. Kardas, N-Aminorhodanine as an effective corrosion inhibitor for mild steel in 0.5 M H2SO4, Corros. Sci. 53(2011) 4223-4232.[40] M.A. Hegazy, Ali M. Hasan, M.M. Emara, Mostafa F. Bakr, Ahmed H. Youssef, Evaluating four synthesized Schiff bases as corrosion inhibitors on the carbon steel in 1 M hydrochloric acid, Corros. Sci. 65(2012) 67-76.[41] A.A. Gewirth, B.K. Niece, Electrochemical applications of in-situ scanning probe microscopy, Chem. Rev. 97(1997) 1129-1162.[42] Q. Qu, S.A. Jiang, W. Bai, L. Li, Effect of ethylenediamine tetraacetic acid disodium on the corrosion of cold rolled steel in the presence of benzotriazole in hydrochloric acid, Electrochim. Acta 52(2007) 6811-6820.[43] M. Yamashita, H. Miyuki, Y. Matsuda, The long term growth of the protective rust layer formed on weathering steel by atmospheric corrosion during a quarter of a century, Corros. Sci. 36(1994) 283-299.[44] A. Raman, B. Kuban, A. Razvan, The application of infrared spectroscopy to the study of atmospheric rust system-I. Standard spectra and illustrative applications to identify rust phases natural atmospheric corrosion products, Corros. Sci. 32(1991) 1295-1306.[45] G. Sigirik, D. Yildirim, T. Tuken, Synthesis and inhibitory effect of N,N'-bis(1-phenylethanol)ethylenediamine against steel corrosion in HCl media, Corros. Sci. 120(2017) 184-193.[46] P.M.L. Bonin, W. Jedral, M.S. Odziemkowski, R.W. Gillham, Electrochemical and Raman spectroscopic studies of the influence of chlorinated solvents on the corrosion behaviour of iron in borate buffer and in simulated groundwater, Corros. Sci. 42(2000) 1921-1939.[47] J.L. Yan, B. Ren, Z.F. Huang, P.G. Cao, R.A. Gu, Z.Q. Tian, Extending surface Raman spectroscopy to transition metals for practical applications IV. A study on corrosion inhibition of benzotriazole on bare Fe electrodes, Electrochim. Acta 48(2003) 1263-1271.[48] N.V. Likhanova, M.A. Dominguez-Aguilar, O. Olivares-Xometl, N. Nava-Entzana, E. Arce, H. Dorantes, The effect of ionic liquids with imidazolium and pyridinium cations on the corrosion inhibition of mild steel in acidic environment, Corros. Sci. 52(2010) 2088-2097.[49] X.H. Li, G.N. Mu, Tween-40 as corrosion inhibitor for cold rolled steel in sulphuric acid:Weight loss study, electro chemical characterization, and AFM, Appl. Surf. Sci. 252(2005) 1254-1265.[50] I.M. Baghmi, S.B. Lyon, B. Ding, The effect of strontium and chromate ions on the inhibition of zinc, Surf. Coat. Technol. 185(2004) 194-198.[51] X.H. Li, S.D. Deng, H. Fu, G.N. Mu, Inhibition by tween-85 of the corrosion of cold rolled steel in 1.0 M hydrochloric acid solution, J. Appl. Electrochem. 39(2009) 1125-1135.[52] M. Chellouli, D. Chebabe, A. Dermaj, H. Erramli, N. Bettach, N. Hajjaji, M.P. Casaletto, C. Cirrincione, A. Privitera, A. Srhiri, Corrosion inhibition of iron in acidic solution by a green formulation derived from Nigella sativa L, Corros. Sci. 204(2016) 50-59.[53] J.M. Zhao, G.H. Chen, The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution, Electrochim. Acta 69(2012) 247-255.[54] T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials, Appl. Surf. Sci. 254(2008) 2441-2449.[55] R. Wang, An AFM and XPS study of corrosion caused by micro-liquid of dilute sulfuric acid on stainless steel, Appl. Surf. Sci. 227(2004) 399-409.[56] O. Olivares-Xometl, N.V. Likhanova, M.A. Dominguez-Aguilar, J.M. Hallen, L.S. Zamudio, E. Arce, Surface analysis of inhibitor films formed by imidazolines and amides on mild steel in an acidic environment, Appl. Surf. Sci. 252(2006) 2139-2152.[57] Y. Yan, W.H. Li, L.K. Cai, B.R. Hou, Electrochemical and quantum chemical study of purines as corrosion inhibitors for mild steel in 1 mol·L-1 HCl solution, Electrochim. Acta 53(2008) 5953-5960.[58] D.O. Isin, N. Karakus, Quantum chemical study on the inhibition efficiencies of some sym-triazinesas inhibitors for mild steel in acidic medium, J. Taiwan Inst. Chem. Eng. 50(2015) 306-313.[59] H.M. Abd El-Lateef, Experimental and computational investigation on the corrosion inhibition characteristics of mild steel by some novel synthesized imines in hydrochloric acid solutions, Corros. Sci. 92(2015) 104-117.[60] M. Finsgar, A. Lesar, A. Kokalj, I. Milosev, A comparative electrochemical and quantum chemical calculation study of BTAH and BTAOH as copper corrosion inhibitors in near neutral chloride solution, Electrochim. Acta 53(2008) 8287-8297.[61] L.J. Feng, H.Y. Yang, F.H. Wang, Experimental and theoretical studies for corrosion inhibition of carbon steel by imidazoline derivative in 5% NaCl saturated Ca(OH)2 solution, Electrochim. Acta 58(2011) 427-436.[62] G. Gece, The use of quantum chemical methods in corrosion inhibitor studies, Corros. Sci. 50(2008) 2981-2992.[63] R.G. Parr, W. Yang, Density function approach to the frontier-electron theory of chemical reactivity, J. Am. Chem. Soc. 106(1984) 4049-4050.[64] K.F. Khaled, Studies of iron corrosion inhibition using chemical, electrochemical and computer simulation techniques, Electrochim. Acta 55(2010) 6523-6532.[65] A. Kakalj, Is the analysis of molecular electronic structure of corrosion inhibitors sufficient to predict the trend of their inhibition performance, Electrochim. Acta 56(2010) 745-755. |