[1] M.A.A. Mohammed, A. Salmiaton, W.A.K.G. Wan Azlina, M.S.M. Amran, A. Fakhru'lRazi, Y.H. Taufiq-Yap, Hydrogen rich gas from oil palm biomass as a potential source of renewable energy in Malaysia, Renew. Sustain. Energy Rev. 15(2011) 1258-1270.[2] China state forestry administration, The Plan of the National Forestry Biomass Energy Development (2011-2020), 5, China state forestry administration, Beijing, 20131-45.[3] A. Darmawan, D. Budianto, M. Aziz, K. Tokimatsu, Retrofitting existing coal power plants through cofiring with hydrothermally treated empty fruit bunch and a novel integrated system, Appl. Energy 204(2017) 1138-1147.[4] M.A. Sukiran, F. Abnisa, W.M.A. Wan Daud, N.A. Bakar, S.K. Loh, A review of torrefaction of oil palm solid wastes for biofuel production, Energy Convers. Manag. 149(2017) 101-120.[5] S.S. Lam, R.K. Liew, Y.M. Wong, P.N.Y. Yek, N.L. Ma, C.L. Lee, H.A. Chase, Microwaveassisted pyrolysis with chemical activation, an innovative method to convert orange peel into activated carbon with improved properties as dye adsorbent, J. Clean. Prod. 162(20) (2017) 1376-1387.[6] M. Shahbaz, S. Yusup, A. Inayat, D.O. Patrick, A. Pratama, M. Ammar, Optimization of hydrogen and syngas production from PKS gasification by using coal bottom ash, Bioresour. Technol. 241(2017) 284-295.[7] H.P. Yang, R. Yan, T. Chin, D.T. Liang, H.P. Chen, C.G. Zheng, Thermogravimetric analysis-Fourier transform infrared analysis of palm oil waste pyrolysis, Energy Fuel 18(6) (2004) 1814-1821.[8] Z.Q. Ma, D.Y. Chen, J. Gu, B.F. Bao, Q.S. Zhang, Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA-FTIR and model-free integral methods, Energy Convers. Manag. 89(2015) 251-259.[9] G. Wang, A.M. Li, Thermal decomposition and kinetics of mixtures of polylactic acid and biomass during copyrolysis, Chin. J. Chem. Eng. 16(6) (2008) 929-933.[10] W.W. Liu, C.W. Hu, Y. Yang, L.F. Zhu, D.M. Tong, Effect of the interference instant of zeolite HY catalyst on the pyrolysis of pubescens, Chin. J. Chem. Eng. 18(2) (2010) 351-354.[11] S.N. Xiu, A. Shahbazi, Bio-oil production and upgrading research:a review, Renew. Sustain. Energy Rev. 16(7) (2012) 4406-4414.[12] M. Cordella, C. Torri, A. Adamiano, D. Fabbri, F. Barontini, V. Cozzani, Bio-oils from biomass slow pyrolysis:a chemical and toxicological, J. Hazard. Mater. 231-232(2012) 26-35.[13] Y.H. Chan, S. Yusup, A.T. Quitain, Y. Uemura, M. Sasaki, Bio-oil production from oil palm biomass via subcritical and supercritical hydrothermal liquefaction, J. Supercrit. Fluids 95(2014) 407-412.[14] J.Y. Jeong, U.D. Lee, W.S. Chang, S.H. Jeong, Production of bio-oil rich in acetic acid and phenol from fast pyrolysis of palm residues using a fluidized bed reactor:influence of activated carbons, Bioresour. Technol. 219(2016) 357-364.[15] G.Z. Chang, P. Miao, X.M. Yan, G.J. Wang, Q.J. Guo, Phenol preparation from catalytic pyrolysis of palm kernel shell at low temperatures, Bioresour. Technol. 253(2017) 214-219.[16] S.J. Oh, G.G. Choi, J.S. Kim, Characteristics of bio-oil from the pyrolysis of palm kernel shell in a newly developed two-stage pyrolyzer, Energy 113(15) (2016) 108-115.[17] A.C. Lua, F.W. Lau, J. Guo, Influence of pyrolysis conditions on pore development of oil-palm-shell activated carbons, J. Anal. Appl. Pyrolysis 76(2006) 96-102.[18] M.M. Rahman, A.M. Yusof, Preparation and modification of activated carbon from oil-palm shell and its adsorption capacity through speciation of chromium, Res. J. Chem. Environ. 15(4) (2011) 49-51.[19] D. Ang?n, E. Altintig, T.E. Köse, Influence of process parameters on the surface and chemical properties of activated carbon obtained from biochar by chemical activation, Bioresour. Technol. 148(2013) 542-549.[20] R. Azargohar, A.K. Dalai, Steam and KOH activation of biochar:experimental and modeling studies, Microporous Mesoporous Mater. 110(2-3) (2008) 413-421.[21] J.E. Omoriyekomwan, A. Tahmasebi, J. Zhang, J.L. Yu, Formation of hollow carbon nanofibers on bio-char during microwave pyrolysis of palm kernel shell, Energy Convers. Manag. 148(2017) 583-592.[22] G.Z. Chang, Y.Q. Huang, J.J. Xie, H.K. Yang, H.C. Liu, X.L. Yin, C.Z. Wu, The lignin pyrolysis composition and pyrolysis products of palm kernel shell, wheat straw, and pine sawdust, Energy Convers. Manag. 124(2016) 587-597.[23] M. Jeremiáš, M. Poho?elý, K. Svoboda, V. Manovic, E.J. Anthony, S. Skoblia, Z. Beňo, M. Šyc, Gasification of biomass with CO2 and H2O mixtures in a catalytic fluidized bed, Fuel 210(15) (2017) 605-610.[24] D.D. Feng, Y.J. Zhao, Y. Zhang, S.Z. Sun, S. Meng, Y.Z. Guo, Y.D. Huang, Effects of K and Ca on reforming of model tar compounds with pyrolysis biochars under H2O or CO2, Chem. Eng. J. 306(15) (2016) 422-432.[25] C. Guizani, M. Jeguirim, R. Gadiou, F.J.E. Sanz, S. Salvador, Biomass char gasification by H2O, CO2 and their mixture:evolution of chemical, textural and structural properties of the chars, Energy 112(2016) 133-145.[26] S. Román, J.F. González, C.M. González-García, F. Zamora, Control of pore development during CO2 and steam activation of olive stones, Fuel Process. Technol. 89(2008) 715-720.[27] L. Briesemeister, M. Kremling, S. Fendt, H. Spliethoff, Air-blown entrained flow gasification of biocoal:gasification kinetics and char behavior, Energy Fuel 31(2017) 9568-9575.[28] Z.H. Wang, K. Zhang, Y. Li, Y. He, M. Kuang, Q. Li, K.F. Cen, Gasification characteristics of different rank coals at H2O and CO2 atmospheres, J. Anal. Appl. Pyrolysis 122(2016) 76-83.[29] H.Y. Li, X. Jiang, H.R. Cui, F.Y. Wang, X.L. Zhang, L. Yang, C.P. Wang, Investigation on the co-pyrolysis of waste rubber/plastics blended with a stalk additive, J. Anal. Appl. Pyrolysis 115(2015) 37-42.[30] G.Z. Chang, J.J. Xie, Y.Q. Huang, H.C. Liu, X.L. Yin, C.Z. Wu, Gasification reactivity and pore structure development:effect of intermittent addition of steam on increasing reactivity of PKS biochar with CO2, Energy Fuel 31(2017) 2887-2895.[31] Y.P. Li, J. Gong, F. Huang, H.C. Bai, F.Y. Wang, C.P. Wang, Carbon deposition and sintering characteristics on iron-based oxygen carriers in the catalytic cracking process of coal tar, Energy Fuel 31(2017) 6501-6506.[32] M. Malekshahian, J.M. Hill, Effect of pyrolysis and CO2 gasification pressure on the surface area and pore size distribution of petroleum coke, Energy Fuel 25(11) (2011) 5250-5256.[33] P. Fu, S. Hu, J. Xiang, W.M. Yi, X.Y. Bai, L.S. Sun, S. Su, Evolution of char structure during steam gasification of the chars produced from rapid pyrolysis of rice husk, Bioresour. Technol. 114(2012) 691-697.[34] J. Xu, S. Su, Z.J. Sun, N.N. Si, M.X. Qing, L.J. Liu, S. Hu, Y. Wang, J. Xiang, Effects of H2O gasification reaction on the characteristics of chars under oxy-fuel combustion conditions with wet recycle, Energy Fuel 30(11) (2016) 9071-9079.[35] A. Alexiadis, S. Kassinos, The density of water in carbon nanotubes, Chem. Eng. Sci. 63(8) (2008) 2047-2056.[36] L. Liu, S.K. Bhatia, Molecular simulation of CO2 adsorption in the presence of water in single-walled carbon nanotubes, J. Phys. Chem. C 117(26) (2013) 13479-13491.[37] N.P. Ivleva, A. Messerer, X. Yang, R. Niessner, U. Pöschl, Raman microspectroscopic analysis of changes in the chemical structure and reactivity of soot in a diesel exhaust aftertreatment model system, Environ. Sci. Technol. 41(2007) 3702-3707.[38] A. Gómez-Barea, P. Ollero, A. Villanueva, Diffusion effects in CO2 gasification experiments with single biomass char particles. 2. Theoretical predictions, Energy Fuel 20(5) (2006) 2211-2222. |