[1] L. Liu, S. Zhang, X. Lü, X. Yu, S. Zhi, Ozonation of sulfur dioxide in sulphuric acid solution, Chin. J. Chem. Eng. 21 (7) (2013) 808-812.
[2] J. Gao, T.Wang, Q. Shu, N. Zeeshan, Q.Wen, D. Wang, J.Wang, An adsorption kinetic model for sulfur dioxide adsorption by ZL50 activated carbon, Chin. J. Chem. Eng. 18 (2) (2010) 223-230.
[3] J. Xue, L.Meng', B. Shen, S. Du, X. Lan, Study on desorbing sulfur dioxide from citrate solution by ultrasonification, Chin. J. Chem. Eng. 15 (4) (2007) 478-485.
[4] R. Hallaj, M. Nikazar, B. Dabir, Thermogravimetric study and modeling of direct sulfation of limestone by sulfur dioxide, Chin. J. Chem. Eng. 12 (4) (2004) 566-569.
[5] C. Hsia, G.R. St Pierre, K. Raghunathan, L.S. Fan, Diffusion through CaSO4 formed the reaction of CaO with SO2 and O2, AIChE J. 39 (4) (1993) 698-700.
[6] C. Hsia, G.R. St Pierre, L.S. Fan, Isotope study on diffusion in CaSO4 formed during sorbent-flue-gas reaction, AIChE J. 41 (10) (1995) 2337-2340.
[7] G.A. Simons, A.R. Garman, Small pore closure and the deactivation of the limestone sulfation reaction, AIChE J. 32 (9) (1986) 1491-1499.
[8] C.Wang, X. Shen, Y. Xu, Investigation on sulfation ofmodified Ca-based sorbent, Fuel Process. Technol. 79 (2) (2002) 121-133.
[9] S.K. Bhatia, D.D. Perlmutter, The effect of pore structure on fluid-solid reactions: application to the SO2-lime reaction, AICHE J. 27 (1981) 226-234.
[10] R.H. Borgwardt, K.R. Bruce, J. Blake, An investigation of product-layer diffusivity for calcium oxide sulfation, Ind. Eng. Chem. Res. 26 (10) (1987) 1993-1998.
[11] C.N. Satterfield, Mass Transfer in Heterogeneous Catalysis, M.I.T. Press, Cambridge, United States of America, 1970.
[12] O. Levenspiel, Chemical Reaction Engineering, Wiley, New York, United States of America, 1972.
[13] N. Orbey, G. Dogu, T. Dogu, Breakthrough analysis of noncatalytic solid-gas reactions: reaction of SO2 with calcined limestone, Can. J. Chem. Eng. 60 (2) (1982) 314-318.
[14] J. Szekely, J.W. Evans, A structural model for gas-solid reactions with a moving boundary, Chem. Eng. Sci. 25 (1970) 1091-1107.
[15] P.A. Ramachandran, L.K. Doraiswamy, Modeling of noncatalytic gas-solid reactions, AIChE J. 28 (1982) 881-900.
[16] M. Hartman, R.W. Coughlin, Reaction of sulfur dioxide with limestone and the grain model, AIChE J. 22 (1976) 490-498.
[17] M. Hartman, O. Trnka, Influence of temperature on the reactivity of limestone particles with sulfur dioxide, Chem. Eng. Sci. 35 (1980) 1189-1194.
[18] T. Bardakci, Diffusional study of the reaction of sulfur dioxide with reactive porous matrices, Thermochim. Acta 76 (1984) 287-300.
[19] R.H. Borgwardt, K.R. Bruce, Effect of specific surface area on the reactivity of CaO with SO2, AIChE J. 32 (1986) 239-246.
[20] P.G. Christman, T.F. Edgar, Distributed pore-size model for sulfation of limestone, AICHE J. 29 (1983) 388-395.
[21] D. Kocaefa, D. Karman, F.R. Steward, Interpretation of the sulfation rate of CaO,MgO, and ZnO with SO2 and SO3, AIChE J. 33 (1987) 1835-1843.
[22] S.K. Bhatia, D.D. Perlmutter, A random pore model for fluid-solid reactions: I. Isothermal, kinetic control, AIChE J. 26 (1980) 379-386.
[23] S.K. Bhatia, D.D. Perlmutter, A randomporemodel for fluid-solid reactions: II. Diffusion and transport effects, AIChE J. 27 (1981) 247-254.
[24] B. Lindner, D. Simonsson, Comparison of structural models for gas-solid reactions in porous solids undergoing structural changes, Chem. Eng. Sci. 36 (1981) 1519-1527.
[25] M. Sahimi, G.R. Gavalas, T.T. Tsotsis, Statistical and continuum models of fluid-solid reactions in porous media, Chem. Eng. Sci. 45 (1990) 1443-1502.
[26] P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three. I. Fractal theory of heterogeneous surfaces, J. Chem. Phys. 79 (7) (1983) 3558-3565.
[27] A.J. Katz, A.H. Thompson, Fractal sandstone pores: implication for conductivity and pore formation, Phys. Rev. Lett. 54 (1985) 1325-1328.
[28] Y. Gefen, A. Aharony, S. Alexander, Anomalous diffusion on percolation clusters, Phys. Rev. Lett. 50 (1983) 77-80.
[29] P. Levitz, From Knudsen diffusion to Levy walks, Europhys. Lett. 39 (1997) 593-598.
[30] M. Costa, A. Araujo, H. Silva, J. Andrade, Scaling behavior of diffusion and reaction processes in percolating porous media, Phys. Rev. E. 67 (2003) 061406.
[31] Z. Liang, R. He, Q. Chen, Fractal generation of char pores through randomwalk, Combust. Sci. Technol. 179 (3) (2007) 637-661.
[32] L. Cao, R. He, Gas diffusion in fractal porous media, Combust. Sci. Technol. 182 (2010) 822-841.
[33] G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Oxford University Press, New York, 1994.
[34] R. He, X. Xu, C. Chen, Evolution of pore fractal dimensions for burning porous chars, Fuel 77 (1998) 1291-1295.
[35] J. Jeans, An Introduction to the Kinetic Theory of Gases, Cambridge University Press, Cambridge, 1952.
[36] S. Glasstone, K.L. Ladler, H. Eyring, The Theory of Rate Processes, McGraw-Hill Book Co., New York, 1941.
[37] R.H. Flowler, E.A. Guggenheim, Statistical Thermodynamics, Cambridge University Press, Cambridge, 1967.
[38] R.D. Present, Note on the simple collision theory of bimolecular reactions, Proc. Natl. Acad. Sci. U. S. A. 41 (1955) 415-417.
[39] C.M. Kachhava, Solid State Physics, Tata McGraw-Hill Pub, New Delhi, 1990.
[40] W. Duo, K. Laursen, J. Lim, J. Grace, Crystallization and fracture: Product layer diffusion in sulfation of calcined limestone, Ind. Eng. Chem. Res. 43 (2004) 5653-5662.
[41] D.W. Marsh, D.L. Ulrichson, Rate and diffusional study of the reaction of calcium oxide with sulfur dioxide, Chem. Eng. Sci. 40 (3) (1985) 423-433.
[42] W. He, R. He, L. Cao, T. Ito, T. Suda, J. Sato, Numerical study of the relationships between pore structures and reaction parameters for coal char particles, Combust. Sci. Technol. 184 (12) (2012) 2084-2099.
[43] C.C. Geogakis, W. Chang, J. Szekely, A changing grain size model for gas-solid reactions, Chem. Eng. Sci. 34 (8) (1979) 1072-1075. |