[1] R. He, J.I. Sato, C.H. Chen, Modeling char combustion with fractal pore effects, Combust. Sci. Technol. 174(2002) 19-37. [2] W. He, R. He, L. Cao, T. Ito, T. Suda, J.I. Sato, Numerical study of the relationships between pore structures and reaction parameters for coal char particles, Combust. Sci. Technol. 184(2012) 2084-2099. [3] Y. Liu, R. He, Modeling of the pore structure evolution in porous char particles during combustion, Combust. Sci. Technol. 188(2016) 207-232. [4] W. He, Y. Liu, R. He, T. Ito, T. Suda, T. Fujimori, H. Ikeda, J.I. Sato, Combustion rate for char with fractal pore characteristics, Combust. Sci. Technol. 185(2013) 1624-1643. [5] Y. Liu, R. He, Variation of apparent reaction order in char combustion and its effect on a fractal char combustion model, Combust. Sci. Technol. 187(2015) 1638-1660. [6] I.W. Smith, The combustion rates of coal chars:A review, Symp. Combust. 19(1982) 1045-1065. [7] R. He, X. Xu, C. Chen, H. Fan, B. Zhang, Evolution of pore fractal dimensions for burning porous chars, Fuel 77(1998) 1291-1295. [8] D. Avnir, D. Farin, P. Pfeifer, Surface geometric irregularity of particulate materials:The fractal approach, J. Colloid Interface Sci. 103(1985) 112-123. [9] C. Fairbridge, S.H. Ng, A.D. Palmer, Fractal analysis of gas-adsorption on syncrude coke, Fuel 65(1986) 1759-1762. [10] W.I. Friesen, O.I. Ogunsola, Mercury porosimetry of upgraded western Canadian coals, Fuel 74(1995) 604-609. [11] P.J. Mcmahon, I.K. Snook, S.D. Moss, P.R. Johnston, Influence of fractal pores on the oxidation behavior of brown coal, Energy Fuel 13(1999) 965-968. [12] P. Pfeifer, D. Avnir, Chemistry in noninteger dimensions between two and three:I. Fractal theory of heterogeneous surfaces, J. Chem. Phys. 79(1983) 3558-3565. [13] P. Salatino, F. Zimbardi, S. Masi, A fractal approach to the analysis of lowtemperature combustion-rate of a coal char:I. Experimental results, Carbon 31(1993) 501-508. [14] M. Costa, A.D. Araujo, H.F. Da Silva, J.S. Andrade, Scaling behavior of diffusion and reaction processes in percolating porous media, Phys. Rev. E 67(2003) 061408-061411. [15] Y. Gefen, A. Aharony, S. Alexander, Anomalous diffusion on percolating clusters, Phys. Rev. Lett. 50(1983) 77-80. [16] P. Levitz, From Knudsen diffusion to Levy walks, Europhys. Lett. 39(1997) 593-598. [17] D. Fortsch, R.H. Essenhigh, U. Schnell, K.R.G. Hein, On the application of the Thiele/Zeldovich analysis to porous carbon combustion, Energy Fuel 17(2003) 901-906. [18] L. Ma, R. Mitchell, Modeling char oxidation behavior under Zone II burning conditions at elevated pressures, Combust. Flame 156(2009) 37-50. [19] W. He, R. He, T. Ito, T. Suda, J.I. Sato, Numerical investigations of CO/CO2 ratio in char combustion, Combust. Sci. Technol. 183(2011) 868-882. [20] Z. Liang, R. He, Q. Chen, X. Xu, J.I. Sato, Fractal generation of char pores through random walk, Combust. Sci. Technol. 179(2007) 637-661. [21] J.E. House, Principles of chemical kinetics, second ed. Academic Press, Pittsburgh, 2007. [22] L. Cao, R. He, Gas diffusion in fractal porous media, Combust. Sci. Technol. 182(2010) 822-841. [23] T.I. Gombosi, Gas kinetic theory, Cambridge University Press, Cambridge, 1994. [24] R.H. Hurt, J.M. Calo, Semi-global intrinsic kinetics for char combustion modeling, Combust. Flame 125(2001) 1138-1149. [25] L. Tognotti, J.P. Longwell, A.F. Sarofim, The products of the high temperature oxidation of a single char particle in an electrodynamic balance, Symp. Combust. 23(1991) 1207-1213. [26] A.N. Hayhurst, M.S. Parmar, Does solid carbon burn in oxygen to give the gaseous intermediate CO or produce CO2 directly? Some experiments in a hot bed of sand fluidized by air, Chem. Eng. Sci. 53(1998) 427-438. [27] L. Chen, S.Z. Yong, A.F. Ghoniem, Oxy-fuel combustion of pulverized coal:characterization, fundamentals, stabilization and CFD modeling, Prog. Energy Combust. Sci. 38(2012) 156-214. [28] T. Wall, Y. Liu, C. Spero, L. Elliott, S. Khare, R. Rathnam, F. Zeenathal, B. Moghtaderi, B. Buhre, C. Sheng, R. Gupta, T. Yamada, K. Makino, J. Yu, An overview on oxyfuel coal combustion-State of the art research and technology development, Chem. Eng. Res. Des. 87(2009) 1003-1016. [29] P.L. Walker Jr., F. Rusinko Jr., L.G. Austin, Gas reactions of carbon, Adv. Catal. 11(1959) 133-221. [30] K.K. Kuo, Principles of combustion, second ed. John Wiley and Sons, New Jersey, 2005. [31] I. Aarna, E.M. Suuberg, Changes in reactive surface area and porosity during char oxidation, Symp. Combust. 27(1998) 2933-2939. [32] K.E. Adams, D.R. Glasson, S.A.A. Jayaweera, Development of porosity during the combustion of coals and cokes, Carbon 27(1989) 95-101. [33] B. Feng, S.K. Bhatia, Variation of the pore structure of coal chars during gasification, Carbon 41(2003) 507-523. [34] H. Lorenz, E. Carrea, M. Tamura, J. Haas, The role of char surface structure development in pulverized fuel combustion, Fuel 79(2000) 1161-1172. [35] L.M. Lu, V. Sahajwalla, D. Harris, Coal char reactivity and structural evolution during combustion-Factors influencing blast furnace pulverized coal injection operation, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 32(2001) 811-820. [36] A.K. Sadhukhan, P. Gupta, R.K. Saha, Characterization of porous structure of coal char from a single devolatilized coal particle:coal combustion in a fluidized bed, Fuel Process. Technol. 90(2009) 692-700. [37] I. Sircar, A. Sane, W. Wang, J.P. Gore, Experimental and modeling study of pinewood char gasification with CO2, Fuel 119(2014) 38-46. [38] J.L. Su, D.D. Perlmutter, Effect of pore structure on char oxidation kinetics, AIChE J. 31(1985) 973-981. |