[1] J. Li, M. Kwauk, Particle-fluid Two-phase Flow:The Energy-minimization Multiscale Method, Metallurgical Industry Press, Beijing, 1994(in Chinese).[2] S. Sundaresan, Modeling the hydrodynamics of multiphase flow reactors:Current status and challenges, AICHE J. 46(2000) 1102-1105.[3] J. Li, M. Kwauk, Exploring complex systems in chemical engineering-The multi-scale methodology, Chem. Eng. Sci. 58(2003) 521-535.[4] J.R. Grace, R. Clift, On the two-phase theory of fluidization, Chem. Eng. Sci. 29(1974) 327-334.[5] R.J. Best, J.G. Yates, The expansion characteristics of a bubbling fluidized bed, Powder Technol. 16(1977) 285-288.[6] D. Kunii, O. Levenspiel, Fluidization Engineering, Second ed. Butterworth-Heinemann, Boston, 1991137-164.[7] J. Li, A. Chen, Z. Yan, G. Xu, X. Zhang, Particle-fluid Contacting in Circulating Fluidized Beds, Preprint Volume for Circulating Fluidized Beds IV, AIChE, Somerset, 1993.[8] T.J.O. Brien, M. Syamlal, Particle Cluster Effects in the Numerical Simulation of a Circulating Fluidized Bed, Preprint Volume for Circulating Fluidized Beds IV, AIChE, Somerset, 1993.[9] J. Li, L. Wen, W. Ge, H. Cui, J. Ren, Dissipative structure in concurrent-up gas-solid flow, Chem. Eng. Sci. 53(1998) 3367-3379.[10] N. Yang, W. Wang, W. Ge, J. Li, Choosing structure-dependent drag coefficient in modeling gas-solid two-phase flow, China Particuology 1(2003) 38-41.[11] B. Lu, W. Wang, J. Li, X. Wang, S. Gao, W. Lu, Y. Xu, J. Long, Multi-scale CFD simulation of gas-solid flow in MIP reactors with a structure-dependent drag model, Chem. Eng. Sci. 62(2007) 5487-5494.[12] W. Wang, J. Li, Simulation of gas-solid two-phase flow by a multi-scale CFD approach-Extension of the EMMS model to the sub-grid level, Chem. Eng. Sci. 62(2007) 208-231.[13] B. Lu, W. Wang, J. Li, Searching for a mesh-independent sub-grid model for CFD simulation of gas-solid riser flows, Chem. Eng. Sci. 64(2009) 3437-3447.[14] B. Lu, W. Wang, J. Li, Eulerian simulation of gas-solid flows with particles of Geldart groups A, B and D using EMMS-based meso-scale model, Chem. Eng. Sci. 66(2011) 4624-4635.[15] Y. Mei, M. Zhao, B. Lu, S. Chen, W. Wang, Numerical comparison of two modes of gas-solid riser operation:Fluid catalytic cracking vs CFB combustor, Particuology 31(2017) 42-48.[16] Z. Shi, W. Wang, J. Li, A bubble-based EMMS model for gas-solid bubbling fluidization, Chem. Eng. Sci. 66(2011) 5541-5555.[17] K. Hong, Z. Shi, W. Wang, J. Li, A structure-dependent multi-fluid model (SFM) for heterogeneous gas-solid flow, Chem. Eng. Sci. 99(2013) 191-202.[18] K. Hong, Z. Shi, A. Ullah, W. Wang, Extending the bubble-based EMMS model to CFB riser simulations, Powder Technol. 266(2014) 424-432.[19] O. Owoyemi, L. Mazzei, P. Lettieri, CFD modeling of binary-fluidized suspensions and investigation of role of particle-particle drag on mixing and segregation, AICHE J. 53(2007) 1924-1940.[20] V. Mizonov, H. Berthiaux, C. Gatumel, Theoretical search for solutions to minimize negative influence of segregation in mixing of particulate solids, Particuology 25(2016) 36-41.[21] M. Kiani, M.R. Rahimi, S.H. Hosseini, G. Ahmadi, Mixing and segregation of solid particles in a conical spouted bed:Effect of particle size and density, Particuology 32(2017) 132-140.[22] M.P. Babu, P.S.T. Sai, K. Krishnaiah, Continuous segregation of binary heterogeneous solids in a fast-fluidized bed, Particulogy 35(2017) 93-100.[23] M. Wormsbecker, A. Adams, T. Pugsley, C. Winters, Segregation by size difference in a conical fluidized bed of pharmaceutical granulate, Powder Technol. 153(2005) 72-80.[24] J.R. Grace, G. Sun, Influence of particle size distribution on the performance of fluidized bed reactors, Can. J. Chem. Eng. 69(1991) 1126-1134.[25] X.Z. Chen, Z.H. Luo, W.C. Yan, Y.H. Lu, I.S. Ng, Three-dimensional CFD-PBM coupled model of the temperature fields in fluidized-bed polymerization reactors, AICHE J. 57(2011) 3351-3366.[26] L.T. Zhu, H. Pan, Y.H. Su, Z.H. Luo, Effect of particle polydispersity on flow and reaction behaviors of methanol-to-olefins fluidized bed reactors, Ind. Eng. Chem. Res. 56(2017) 1090-1102.[27] P.N. Rowe, A.W. Nienow, Particle mixing and segregation in gas fluidised beds. A review, Powder Technol. 15(1976) 141-147.[28] J.W. Chew, R. Hays, J.G. Findlay, T.M. Knowlton, S.B.R. Karri, R.A. Cocco, C.M. Hrenya, Cluster characteristics of Geldart group B particles in a pilot-scale CFB riser. Ⅱ. Polydisperse systems, Chem. Eng. Sci. 68(2012) 82-93.[29] B. Lu, N. Zhang, W. Wang, J. Li, J.H. Chiu, S.G. Kang, 3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler, AICHE J. 59(2013) 1108-1117.[30] S. Benyahia, Analysis of model parameters affecting the pressure profile in a circulating fluidized bed, AICHE J. 58(2012) 427-439.[31] M. Lungu, Y. Zhou, J. Wang, Y. Yang, A CFD study of a bi-disperse gas-solid fluidized bed:Effect of the EMMS sub grid drag correction, Powder Technol. 280(2015) 154-172.[32] Q. Zhou, J. Wang, CFD study of mixing and segregation in CFB risers:Extension of EMMS drag model to binary gas-solid flow, Chem. Eng. Sci. 122(2015) 637-651.[33] J. Wang, W. Ge, J. Li, Eulerian simulation of heterogeneous gas-solid flows in CFB risers:EMMS-based sub-grid scale model with a revised cluster description, Chem. Eng. Sci. 63(2008) 1553-1571.[34] Y. Zhao, H. Li, M. Ye, Z. Liu, 3D numerical simulation of a large scale MTO fluidized bed reactor, Ind. Eng. Chem. Res. 52(2013) 11354-11364.[35] K. Hong, S. Chen, W. Wang, J. Li, Fine-grid two-fluid modeling of fluidization of Geldart A particles, Powder Technol. 296(2016) 2-16.[36] B. Lu, H. Luo, H. Li, W. Wang, M. Ye, Z. Liu, J. Li, Speeding up CFD simulation of fluidized bed reactor for MTO by coupling CRE model, Chem. Eng. Sci. 143(2016) 341-350.[37] B. Lu, J. Zhang, H. Luo, W. Wang, H. Li, M. Ye, Z. Liu, J. Li, Numerical simulation of scale-up effects of methanol-to-olefins fluidized bed reactors, Chem. Eng. Sci. 171(2017) 244-255.[38] H. Luo, B. Lu, J. Zhang, H. Wu, W. Wang, A grid-independent EMMS/bubbling drag model for bubbling and turbulent fluidization, Chem. Eng. J. 326(2017) 47-57.[39] Y. Tian, J. Geng, W. Wang, Structure-dependent analysis of energy dissipation in gas-solid flows:Beyond nonequilibrium thermodynamics, Chem. Eng. Sci. 171(2017) 271-281.[40] S. Mori, C.Y. Wen, Estimation of bubble diameter in gaseous fluidized beds, AICHE J. 21(1975) 109-115.[41] S. Karimipour, T. Pugsley, A critical evaluation of literature correlations for predicting bubble size and velocity in gas-solid fluidized beds, Powder Technol. 205(2011) 1-14.[42] J.B. Romero, L.N. Johanson, Factors affecting fluidized bed quality, Chem. Eng. Prog. Symp. Ser. 58(1962) 28-37.[43] A. Whitehead, A. Young, Fluidization performance in large scale equipment, Proceedings of the International Symposium on Fluidization 1967, pp. 284-293.[44] D. Geldart, The effect of particle size and size distribution on the behaviour of gasfluidised beds, Powder Technol. 6(1972) 201-215.[45] C. Fryer, O.E. Potter, Experimental investigation of models for fluidized bed catalytic reactors, AICHE J. 22(1976) 38-47.[46] C.X. Yacono, An X-ray study of bubbbles in gas-fluidised beds of small particles, Ph.D. Dissertation, University of London, 1975.[47] J. Werther, Hydrodynamics and mass transfer between the bubble and emulsion phases in fluidized beds of sand and cracking catalyst, in:R. Toei (Ed.), Fluidization, New York Engineering Foundation, 1983.[48] P. Cai, M. Schiavetti, G. De Michele, G.C. Grazzini, M. Miccio, Quantitative estimation of bubble size in PFBC, Powder Technol. 80(1994) 99-109.[49] M. Horio, A. Nonaka, A generalized bubble diameter correlation for gas-solid fluidized beds, AICHE J. 33(1987) 1865-1872.[50] R. Krishna, J.M. van Baten, Using CFD for scaling up gas-solid bubbling fluidised bed reactors with Geldart A powders, Chem. Eng. J. 82(2001) 247-257.[51] F. Johnsson, S. Andersson, B. Leckner, Expansion of a freely bubbling fluidized bed, Powder Technol. 68(1991) 117-123.[52] D. Geldart, The size and frequency of bubbles in two- and three-dimensional gasfluidised beds, Powder Technol. 4(1970) 41-55.[53] G. Yasui, L.N. Johanson, Characteristics of gas pockets in fluidised beds, AICHE J. 4(1958) 445-452.[54] W.H. Park, W.K. Kang, C.E. Capes, G.L. Osberg, The properties of bubbles in fluidised beds of conducting particles as measured by an electroresistivity probe, Chem. Eng. Sci. 24(1969) 851-865.[55] A.R. Abrahamsen, D. Geldart, Behaviour of gas-fluidized beds of fine powders part Ⅱ. Voidage of the dense phase in bubbling beds, Powder Technol. 26(1980) 47-55.[56] H. Cui, N. Mostoufi, J. Chaouki, Gas and solids between dynamic bubble and emulsion in gas-fluidized beds, Powder Technol. 120(2001) 12-20.[57] K. Hilligardt, J. Werther, Influence of temperature and properties of solids on the size and growth of bubbles in gas fluidized beds, Chem. Eng. Technol. 10(1987) 272-280.[58] S. Chiba, T. Chiba, A.W. Nienow, H. Kobayashi, The minimum fluidisation velocity, bed expansion and pressure-drop profile of binary particle mixtures, Powder Technol. 22(1979) 255-269.[59] B. Formisani, G.D. Cristofaro, R. Girimonte, A fundamental approach to the phenomenology of fluidization of size segregating binary mixtures of solids, Chem. Eng. Sci. 56(2001) 109-119. |